There are two stages to analyzing a text input stream for parsing:
Lexical Analysis: This is where your input stream is broken into lexical units. It looks at a sequence of characters and generates tokens (analagous to word in spoken or written languages). Finite state machines are very good at lexical analysis provided you've made good design decision about the lexical structure. From your data above, individal lexemes would be things like your keywords (e.g. "global"), identifiers (e.g. "bitwise", "SOURCES"), symbolic tokesn (e.g. "{" "}", ".", "/"), numeric values, escape values (e.g. "\n"), etc.
Syntactic / Grammatic Analysis: Upon generating a sequence of tokens (or perhaps while you're doing so) you need to be able to analyze the structure to determine if the sequence of tokens is consistent with your language design. You generally need some sort of parser for this, though if the language structure is not very complicated, you may be able to do it with a finite state machine instead. In general (and since you want nesting structures in your case in particular) you will need to use one of the techniques Ken Bloom describes.
So in response to your questions:
Should I use an enum or an abstract class + derivatives for my states?
I found that for small tokenizers, a matrix of state / transition values is suitable, something like next_state = state_transitions[current_state][current_input_char]
. In this case, the next_state
and current_state
are some integer types (including possibly an enumerated type). Input errors are detected when you transition to an invalid state. The end of an token is identified based on the state identification of valid endstates with no valid transition available to another state given the next input character. If you're concerned about space, you could use a vector of maps instead. Making the states classes is possible, but I think that's probably making thing more difficult than you need.
When reading a list, I need to NOT ignore \n.
You can either create a token called "\n", or a more generalize escape token (an identifier preceded by a backslash. If you're talking about identifying line breaks in the source, then those are simply characters you need to create transitions for in your state transition matrix (be aware of the differnce between Unix and Windows line breaks, however; you could create a FSM that operates on either).
Will the simple enum states suffice for multi-level parsing (scopes within scopes {...{...}...}) or would that need hacky implementations?
This is where you will need a grammar or pushdown automaton unless you can guarantee that the nesting will not exceed a certain level. Even then, it will likely make your FSM very complex.
Here's the draft states I have in mind: ...
See my commments on lexical and grammatical analysis above.