2

次のシーケンスは、取得した pandas DataFrame の抜粋です。

>>> df_t
              value
2011-01-31    -5.575000
2011-03-31     7.700000
2011-05-31    15.966667
2011-07-31    10.683333
2011-08-31    10.454167
2011-10-31     9.320833
2011-12-31    -0.358333
2012-01-31   -11.550000
2012-03-31     1.700000
2012-05-31    12.333333
2012-07-31    12.816667
2012-08-31    11.837500
2012-10-31     2.733333
2012-12-31     4.075000
2013-01-31     2.450000
2013-03-31    -4.262500
2013-05-31    11.491667
2013-07-31    14.812500
2013-08-31    13.920833
2013-10-31     4.125000
2013-12-31     0.075000 

うるう年の 3 月 31 日を削除するにはどうすればよいですか? 私は次のようなものを試しました:

def isleap(year):
return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)

if isleap(df_t.index.year):
        df_t=df_t[df_t.index.dayofyear!=91]

...しかし、明らかに、これは私の頭の中では単純すぎました。データフレーム全体をループして、年がうるう年で日付が 91 日目であるかどうかをすべてのステップで確認する唯一の解決策はありますか、それともより簡単な解決策がありますか?

編集:問題は、年がうるう年かどうかを判断する方法ではなく、うるう年である場合は、上記のデータフレームで 3 月 31 日を削除することです。

4

1 に答える 1

2

ベクトル化された方法でそれを行う例を次に示します。andandorはブール値のベクトルには適していないことに注意してください。代わりに&andを使用してください。|

import pandas as pd
import numpy as np

s = pd.Series(np.random.randn(600), index=pd.date_range('1990-01-01', periods=600, freq='M'))

Out[76]: 
1990-01-31   -0.7594
1990-02-28   -0.1311
1990-03-31    1.2031
1990-04-30    1.1999
1990-05-31   -2.4399
               ...  
2039-08-31   -0.3554
2039-09-30   -0.3265
2039-10-31   -0.3832
2039-11-30   -1.4139
2039-12-31   -0.3086
Freq: M, dtype: float64


def is_leap_and_MarchEnd(s):
    return (s.index.year % 4 == 0) & ((s.index.year % 100 != 0) | (s.index.year % 400 == 0)) & (s.index.month == 3) & (s.index.day == 31)

mask = is_leap_and_MarchEnd(s)
s[mask]
Out[77]: 
1992-03-31    0.7834
1996-03-31    0.3121
2000-03-31   -1.2050
2004-03-31    0.6017
2008-03-31    0.1045
               ...  
2020-03-31    1.1037
2024-03-31    0.5139
2028-03-31   -0.8116
2032-03-31   -0.6939
2036-03-31   -1.1999
dtype: float64

# do delete these row
s[~mask]
于 2015-06-23T08:26:37.027 に答える