5

numpy 配列の各要素を配列自体に変換しようとしています (たとえば、グレースケール画像をカラー画像として解釈するため)。言い換えると:

>>> my_ar = numpy.array((0,5,10))
[0, 5, 10]
>>> transformed = my_fun(my_ar)  # In reality, my_fun() would do something more useful
array([
      [ 0,  0, 0], 
      [ 5, 10, 15], 
      [10, 20, 30]])
>>> transformed.shape
(3, 3)

私はもう試した:

def my_fun_e(val):
    return numpy.array((val, val*2, val*3))

my_fun = numpy.frompyfunc(my_fun_e, 1, 3)

しかし、得る:

my_fun(my_ar)
(array([[0 0 0], [ 5 10 15], [10 20 30]], dtype=object), array([None, None, None], dtype=object), array([None, None, None], dtype=object))

そして私は試しました:

my_fun = numpy.frompyfunc(my_fun_e, 1, 1)

しかし、得る:

>>> my_fun(my_ar)
array([[0 0 0], [ 5 10 15], [10 20 30]], dtype=object)

これは近いですが、正確ではありません。int の配列ではなく、オブジェクトの配列を取得します。

アップデート3!わかった。私の例は前もって単純すぎることに気付きました。データを 3 次元で複製するだけでなく、同時に変換したいのです。多分これはより明確ですか?

4

4 に答える 4

7

numpy.dstackはあなたが望むことをしますか?最初の2つのインデックスは元の配列と同じであり、新しい3番目のインデックスは「深さ」です。

>>> import numpy as N
>>> a = N.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
>>> b = N.dstack((a,a,a))
>>> b
array([[[1, 1, 1],
        [2, 2, 2],
        [3, 3, 3]],

       [[4, 4, 4],
        [5, 5, 5],
        [6, 6, 6]],

       [[7, 7, 7],
        [8, 8, 8],
        [9, 9, 9]]])
>>> b[1,1]
array([5, 5, 5])
于 2008-11-24T04:45:11.210 に答える
2

map を使用して、変換関数を my_ar の各要素に適用します。

import numpy

my_ar = numpy.array((0,5,10))
print my_ar

transformed = numpy.array(map(lambda x:numpy.array((x,x*2,x*3)), my_ar))
print transformed

print transformed.shape
于 2008-11-25T21:06:54.410 に答える
1

これはあなたが望むことをしますか:

tile(my_ar, (1,1,3))
于 2008-11-22T05:03:33.077 に答える
1

私が提案する:

 numpy.resize(my_ar, (3,3)).transpose()

もちろん、形状(my_ar.shape[0],)*2などを適応させることができます

于 2008-11-21T22:59:33.327 に答える