9

複雑なシミュレーション プログラムを作成していますが、最も時間がかかるのは、4 つのベクトル (float4) と 4x4 の行列を乗算するルーチンです。多かれ少なかれ古い複数のコンピューターでこのプログラムを実行する必要があります。そのため、次のコードでそのような操作の SIMD 機能を確認しようとしました。

//#include <xmmintrin.h> // SSE
//#include <pmmintrin.h> // SSE3
//#include <nmmintrin.h> // SSE4.2
  #include <immintrin.h> // AVX

#include <iostream>
#include <ctime>
#include <string>

using namespace std;

// 4-vector.
typedef struct
{
    float x;
    float y;
    float z;
    float w;
}float4;

// typedef to simplify the pointer of function notation.
typedef void(*Function)(float4&,const float4*,const float4&);

float dot( const float4& in_A, const float4& in_x )
{
    return in_A.x*in_x.x + in_A.y*in_x.y + in_A.z*in_x.z + in_A.w*in_x.w; // 7 FLOPS
}

void A_times_x( float4& out_y, const float4* in_A, const float4& in_x )
{
    out_y.x = dot(in_A[0], in_x); // 7 FLOPS
    out_y.y = dot(in_A[1], in_x); // 7 FLOPS
    out_y.z = dot(in_A[2], in_x); // 7 FLOPS
    out_y.w = dot(in_A[3], in_x); // 7 FLOPS
}

void A_times_x_SSE( float4& out_y, const float4* in_A, const float4& in_x )
{
    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m128 A0 = _mm_load_ps((const float*)(in_A + 0));
    __m128 A1 = _mm_load_ps((const float*)(in_A + 1));
    __m128 A2 = _mm_load_ps((const float*)(in_A + 2));
    __m128 A3 = _mm_load_ps((const float*)(in_A + 3));

    // Transpose the matrix and re-order the vector.
    _MM_TRANSPOSE4_PS( A0,A1,A2,A3 );

    __m128 u1 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(0,0,0,0));
    __m128 u2 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(1,1,1,1));
    __m128 u3 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(2,2,2,2));
    __m128 u4 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(3,3,3,3));

    // Multiply each matrix row with the vector x
    __m128 m0 = _mm_mul_ps(A0, u1); // 4 FLOPS
    __m128 m1 = _mm_mul_ps(A1, u2); // 4 FLOPS
    __m128 m2 = _mm_mul_ps(A2, u3); // 4 FLOPS
    __m128 m3 = _mm_mul_ps(A3, u4); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m128 sum_01 = _mm_add_ps(m0, m1); // 4 FLOPS
    __m128 sum_23 = _mm_add_ps(m2, m3); // 4 FLOPS
    __m128 result = _mm_add_ps(sum_01, sum_23); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);
}

void A_times_x_SSE3( float4& out_y, const float4* in_A, const float4& in_x )
{
    // Should be 4 (SSE) x 4 (ALU) = 16 times faster than scalar.

    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m128 A0 = _mm_load_ps((const float*)(in_A + 0));
    __m128 A1 = _mm_load_ps((const float*)(in_A + 1));
    __m128 A2 = _mm_load_ps((const float*)(in_A + 2));
    __m128 A3 = _mm_load_ps((const float*)(in_A + 3));

    // Multiply each matrix row with the vector x
    __m128 m0 = _mm_mul_ps(A0, x); // 4 FLOPS
    __m128 m1 = _mm_mul_ps(A1, x); // 4 FLOPS
    __m128 m2 = _mm_mul_ps(A2, x); // 4 FLOPS
    __m128 m3 = _mm_mul_ps(A3, x); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m128 sum_01 = _mm_hadd_ps(m0, m1); // 4 FLOPS
    __m128 sum_23 = _mm_hadd_ps(m2, m3); // 4 FLOPS
    __m128 result = _mm_hadd_ps(sum_01, sum_23); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);
}

void A_times_x_SSE4( float4& out_y, const float4* in_A, const float4& in_x ) // 28 FLOPS
{
    // Should be 4 (SSE) x 4 (ALU) = 16 times faster than scalar.

    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m128 A0 = _mm_load_ps((const float*)(in_A + 0));
    __m128 A1 = _mm_load_ps((const float*)(in_A + 1));
    __m128 A2 = _mm_load_ps((const float*)(in_A + 2));
    __m128 A3 = _mm_load_ps((const float*)(in_A + 3));

    // Multiply each matrix row with the vector x
    __m128 m0 = _mm_dp_ps(A0, x, 0xFF); // 4 FLOPS
    __m128 m1 = _mm_dp_ps(A1, x, 0xFF); // 4 FLOPS
    __m128 m2 = _mm_dp_ps(A2, x, 0xFF); // 4 FLOPS
    __m128 m3 = _mm_dp_ps(A3, x, 0xFF); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m128 mov_01 = _mm_movelh_ps(m0, m1); // 4 FLOPS
    __m128 mov_23 = _mm_movelh_ps(m2, m3); // 4 FLOPS
    __m128 result = _mm_shuffle_ps(mov_01, mov_23, _MM_SHUFFLE(2, 0, 2, 0)); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);
}

void A_times_x_AVX( float4& out_y, const float4* in_A, const float4& in_x )
{
    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m256 xx = _mm256_castps128_ps256(x);
           xx = _mm256_insertf128_ps(xx,x,1);
    __m256 A0 = _mm256_load_ps((const float*)(in_A + 0));
    __m256 A2 = _mm256_load_ps((const float*)(in_A + 2));

    // Multiply each matrix row with the vector x
    __m256 m0 = _mm256_mul_ps(A0, xx); // 4 FLOPS
    __m256 m2 = _mm256_mul_ps(A2, xx); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m256 sum_00 = _mm256_hadd_ps(m0, m2); // 4 FLOPS

  /*__m128 sum_10 = _mm256_extractf128_ps(sum_00,0);
    __m128 sum_01 = _mm256_extractf128_ps(sum_00,1);

    __m128 result = _mm_hadd_ps(sum_10, sum_01); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);*/

    // Finally, store the result (no temp variable: direct HADD, this avoid to copy from ALU128 to ALU256)
    _mm_store_ps((float*)&out_y, _mm_hadd_ps(_mm256_extractf128_ps(sum_00,0),
                                             _mm256_extractf128_ps(sum_00,1)));
}

void test_function ( Function f, string simd, unsigned int imax )
{
    float4 Y;
    float4 X1 = {0.5,1,0.2,0.7};
    float4 X2 = {0.7,1,0.2,0.5};
    float4 X3 = {0.5,0.2,1,0.7};
    float4 X4 = {1,0.7,0.2,0.5};
    float4 A[4] = {{0.5,1,0.2,0.7},
                   {0.6,0.4,0.1,0.8},
                   {0.3,0.8,0.2,0.5},
                   {1,0.4,0.6,0.9}};

    clock_t tstart = clock();

    for( unsigned int i=0 ; i<imax ; i++ )
    for( unsigned long int j=0 ; j<250000000 ; j++ )
    // Avoid for loop over long long, it is 2 times slower !
    {
        // Function pointer give a real call, whether the direct
        // call is inlined and thus results are overestimated.
        f( Y,A,X1 );
        f( Y,A,X2 );
        f( Y,A,X3 );
        f( Y,A,X4 );
    }

    clock_t tend = clock();

    double diff = static_cast<double>(tend - tstart) * 1e-3;

    cout << "Time  (" << simd << ") = " << diff << " s" << endl;
    cout << "Nops  (" << simd << ") = " << (double) imax << ".10^9" << endl;
    cout << "Power (" << simd << ") = " << (double) imax * 28. / diff << " GFLOPS" << endl; // 28 FLOPS for std.
    cout << endl;
}

int main ( int argc, char *argv[] )
{
    test_function ( &A_times_x     ,"std" , 1 );
    test_function ( &A_times_x_SSE ,"SSE" , 2 );
    test_function ( &A_times_x_SSE3,"SSE3", 3 );
    test_function ( &A_times_x_SSE4,"SSE4", 1 );
    test_function ( &A_times_x_AVX ,"AVX" , 3 );

    return 0;
}

このような問題の改善については、いくつかのトラブルがあります。コードを実行すると、次の結果が得られます (Intel Core i5 4670K、3.4GHz、Haswell、Codeblock + MinGW コンパイラで -O2 -march=corei7-avx を使用):

Time  (std) = 6.287 s
Nops  (std) = 1.10^9
Power (std) = 4.45363 GFLOPS

Time  (SSE) = 6.661 s
Nops  (SSE) = 2.10^9
Power (SSE) = 8.40715 GFLOPS

Time  (SSE3) = 8.361 s
Nops  (SSE3) = 3.10^9
Power (SSE3) = 10.0466 GFLOPS

Time  (SSE4) = 6.131 s
Nops  (SSE4) = 1.10^9
Power (SSE4) = 4.56695 GFLOPS

Time  (AVX) = 8.767 s
Nops  (AVX) = 3.10^9
Power (AVX) = 9.58138 GFLOPS

私の質問は次のとおりです。

  1. これにより、パフォーマンス/スピードアップをさらに改善することは可能ですか? SSE の場合は x4 (最大)、AVX の場合は x8 である必要があります。

  2. AVX が SSE3 よりも速くないのはなぜですか?

「あなたのものを使うのをやめて、Intel Math Kernel Library を使ってください」と言う人に対して、私はこう答えます。 -)

4

1 に答える 1

5

これにより、パフォーマンス/スピードアップをさらに改善することは可能ですか? SSE の場合は x4 (最大)、AVX の場合は x8 である必要があります。

はい、これについてはeffective-4x4-matrix-vector-multiplication-with-sse-horizo​​ntal-add-and-dot-productで詳しく説明しました。

4x4 行列Mを列ベクトルで乗算する効率u的な方法v = M uは次のとおりです。

v = u1*col1 + u2*col2 + u3*col3 + u4*col4.

これには、列ベクトルを格納する必要があります。たとえば、次の 4x4 マトリックスがあるとしますA

 0  1  2  3
 4  5  6  7
 8  9 10 11
12 13 14 15  

次に、これを次のように保存します

0 4 8 c 1 5 9 d 2 6 a e 3 7 b f

逆に、行ベクトルuT時間行列Mが必要な場合vT = uT*Mは、必要です

vT = uT1*row1 + uT2*row2 + uT3*row3 + uT4*row4.

この場合、列ではなく行をパックする必要があります。

したがって、関数内のコードを最適化するにA_times_x_SSEは、行をコメントアウトします

 _MM_TRANSPOSE4_PS( A0,A1,A2,A3 );

この関数は、水平方向の操作を使用する他の関数よりも高速です。

SIMD による水平操作は効率的ではありません。それらはスカラーのマイクロオペレーションに分割されているため、SIMD ではないため、並列化されていません。これらは、SIMD に適した形式でデータをパックするのが不便な場合にのみ役立ちます。たとえば、列を保存できずM、行しかない場合などです。

AVX が SSE3 よりも速くないのはなぜですか?

これを AVX で効率的に行うには、一度に 2 つの 4x4 マトリックスを操作し、マトリックスをパックして AVX に適したものにする必要があります。Aここで、上で定義した行列に加えて、別の行列があると仮定しましょうB:

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

AパッキングとBAVXの最適な方法は次のとおりです。

col1A col1B col2A col2B col3A col3B col4A col4B
0 4 8 12 16 20 24 28 1 5 9 13 17 21 25 29 2 6 10 14 18 22 26 30 3 7 11 15 19 23 27 31

2 つのベクトルがu = {0,1,2,3}ありv = {4,5,6,7)y=Auz=Bvが必要な場合は、AVX を使用して次のようにします。

c1 = col1A col1B = {0  4  8 12 16 20 24 28} = _mm256_load_ps
c2 = col2A col2B = {1  5  9 13 17 21 25 29}
c3 = col3A col3B = {2  6 10 14 18 22 26 30}
c4 = col4A col4B = {3  7 11 15 19 23 27 31}
broad1 = {0,0,0,0,4,4,4,4}
broad2 = {1,1,1,1,5,5,5,5}
broad3 = {2,2,2,2,6,6,6,6}
broad4 = {3,3,3,3,7,7,7,7}
w = broad1*c1 + broad2*c2 + broad3*c + broad4*c4;
//w = {y1, y2, y3, y4, z1, z2, z3, z4};

したがって、結果の 8 幅のベクトルwには 4 つのベクトルyとが含まれますz。これは、AVX で最も効率的な方法です。行列と変数ベクトルを固定している場合、ループ内で実行できるため、実行時のループ前のパッキングは大きなループでは無視できます。コンパイル時に行列が固定されていることがわかっている場合は、コンパイル時にパックできます。

于 2015-06-27T22:12:24.157 に答える