うーん!このプログラムを挿入したところ、質問に C# というタグが付けられていることに気付きました。これは C++ で、私が数年前に書いた Pollard Rho のバージョンであり、他の誰かが理解できるように SO に投稿しました。半素数の因数分解は、試行分割よりも何倍も高速です。私が言ったように、C# ではなく C++ であることを残念に思いますが、概念を理解し、移植することもかなり簡単にできるはずです。おまけとして、.NET ライブラリには任意の大きな整数を処理するための名前空間があり、私の C++ 実装ではサード パーティのライブラリを探す必要がありました。とにかく、C# でも、以下のプログラムは 2^63 オーダーのセミプライムを 1 秒以内に 2 つの素数に分割します。これよりも高速なアルゴリズムもありますが、はるかに複雑です。
#include <string>
#include <stdio.h>
#include <iostream>
#include "BigIntegerLibrary.hh"
typedef BigInteger BI;
typedef BigUnsigned BU;
using std::string;
using std::cin;
using std::cout;
BU pollard(BU &numberToFactor);
BU gcda(BU differenceBetweenCongruentFunctions, BU numberToFactor);
BU f(BU &x, BU &numberToFactor, int &increment);
void initializeArrays();
BU getNumberToFactor ();
void factorComposites();
bool testForComposite (BU &num);
BU primeFactors[1000];
BU compositeFactors[1000];
BU tempFactors [1000];
int primeIndex;
int compositeIndex;
int tempIndex;
int numberOfCompositeFactors;
bool allJTestsShowComposite;
int main ()
{
while(1)
{
primeIndex=0;
compositeIndex=0;
tempIndex=0;
initializeArrays();
compositeFactors[0] = getNumberToFactor();
cout<<"\n\n";
if (compositeFactors[0] == 0) return 0;
numberOfCompositeFactors = 1;
factorComposites();
}
}
void initializeArrays()
{
for (int i = 0; i<1000;i++)
{
primeFactors[i] = 0;
compositeFactors[i]=0;
tempFactors[i]=0;
}
}
BU getNumberToFactor ()
{
std::string s;
std::cout<<"Enter the number for which you want a prime factor, or 0 to quit: ";
std::cin>>s;
return stringToBigUnsigned(s);
}
void factorComposites()
{
while (numberOfCompositeFactors!=0)
{
compositeIndex = 0;
tempIndex = 0;
// This while loop finds non-zero values in compositeFactors.
// If they are composite, it factors them and puts one factor in tempFactors,
// then divides the element in compositeFactors by the same amount.
// If the element is prime, it moves it into tempFactors (zeros the element in compositeFactors)
while (compositeIndex < 1000)
{
if(compositeFactors[compositeIndex] == 0)
{
compositeIndex++;
continue;
}
if(testForComposite(compositeFactors[compositeIndex]) == false)
{
tempFactors[tempIndex] = compositeFactors[compositeIndex];
compositeFactors[compositeIndex] = 0;
tempIndex++;
compositeIndex++;
}
else
{
tempFactors[tempIndex] = pollard (compositeFactors[compositeIndex]);
compositeFactors[compositeIndex] /= tempFactors[tempIndex];
tempIndex++;
compositeIndex++;
}
}
compositeIndex = 0;
// This while loop moves all remaining non-zero values from compositeFactors into tempFactors
// When it is done, compositeFactors should be all 0 value elements
while (compositeIndex < 1000)
{
if (compositeFactors[compositeIndex] != 0)
{
tempFactors[tempIndex] = compositeFactors[compositeIndex];
compositeFactors[compositeIndex] = 0;
tempIndex++;
compositeIndex++;
}
else compositeIndex++;
}
compositeIndex = 0;
tempIndex = 0;
// This while loop checks all non-zero elements in tempIndex.
// Those that are prime are shown on screen and moved to primeFactors
// Those that are composite are moved to compositeFactors
// When this is done, all elements in tempFactors should be 0
while (tempIndex<1000)
{
if(tempFactors[tempIndex] == 0)
{
tempIndex++;
continue;
}
if(testForComposite(tempFactors[tempIndex]) == false)
{
primeFactors[primeIndex] = tempFactors[tempIndex];
cout<<primeFactors[primeIndex]<<"\n";
tempFactors[tempIndex]=0;
primeIndex++;
tempIndex++;
}
else
{
compositeFactors[compositeIndex] = tempFactors[tempIndex];
tempFactors[tempIndex]=0;
compositeIndex++;
tempIndex++;
}
}
compositeIndex=0;
numberOfCompositeFactors=0;
// This while loop just checks to be sure there are still one or more composite factors.
// As long as there are, the outer while loop will repeat
while(compositeIndex<1000)
{
if(compositeFactors[compositeIndex]!=0) numberOfCompositeFactors++;
compositeIndex ++;
}
}
return;
}
// The following method uses the Miller-Rabin primality test to prove with 100% confidence a given number is composite,
// or to establish with a high level of confidence -- but not 100% -- that it is prime
bool testForComposite (BU &num)
{
BU confidenceFactor = 101;
if (confidenceFactor >= num) confidenceFactor = num-1;
BU a,d,s, nMinusOne;
nMinusOne=num-1;
d=nMinusOne;
s=0;
while(modexp(d,1,2)==0)
{
d /= 2;
s++;
}
allJTestsShowComposite = true; // assume composite here until we can prove otherwise
for (BI i = 2 ; i<=confidenceFactor;i++)
{
if (modexp(i,d,num) == 1)
continue; // if this modulus is 1, then we cannot prove that num is composite with this value of i, so continue
if (modexp(i,d,num) == nMinusOne)
{
allJTestsShowComposite = false;
continue;
}
BU exponent(1);
for (BU j(0); j.toInt()<=s.toInt()-1;j++)
{
exponent *= 2;
if (modexp(i,exponent*d,num) == nMinusOne)
{
// if the modulus is not right for even a single j, then break and increment i.
allJTestsShowComposite = false;
continue;
}
}
if (allJTestsShowComposite == true) return true; // proven composite with 100% certainty, no need to continue testing
}
return false;
/* not proven composite in any test, so assume prime with a possibility of error =
(1/4)^(number of different values of i tested). This will be equal to the value of the
confidenceFactor variable, and the "witnesses" to the primality of the number being tested will be all integers from
2 through the value of confidenceFactor.
Note that this makes this primality test cryptographically less secure than it could be. It is theoretically possible,
if difficult, for a malicious party to pass a known composite number for which all of the lowest n integers fail to
detect that it is composite. A safer way is to generate random integers in the outer "for" loop and use those in place of
the variable i. Better still if those random numbers are checked to ensure no duplicates are generated.
*/
}
BU pollard(BU &n)
{
if (n == 4) return 2;
BU x = 2;
BU y = 2;
BU d = 1;
int increment = 1;
while(d==1||d==n||d==0)
{
x = f(x,n, increment);
y = f(y,n, increment);
y = f(y,n, increment);
if (y>x)
{
d = gcda(y-x, n);
}
else
{
d = gcda(x-y, n);
}
if (d==0)
{
x = 2;
y = 2;
d = 1;
increment++; // This changes the pseudorandom function we use to increment x and y
}
}
return d;
}
BU gcda(BU a, BU b)
{
if (a==b||a==0)
return 0; // If x==y or if the absolute value of (x-y) == the number to be factored, then we have failed to find
// a factor. I think this is not proof of primality, so the process could be repeated with a new function.
// For example, by replacing x*x+1 with x*x+2, and so on. If many such functions fail, primality is likely.
BU currentGCD = 1;
while (currentGCD!=0) // This while loop is based on Euclid's algorithm
{
currentGCD = b % a;
b=a;
a=currentGCD;
}
return b;
}
BU f(BU &x, BU &n, int &increment)
{
return (x * x + increment) % n;
}