次の再帰関係にバインドされている大きな O を見つけようとしています。
T(n) = T(n-1) + n^c, where c >= 1 is a constant
そこで、反復を使用してこれを解決することにしました。
T(n) = T(n-1) + n^c
T(n-1) = T(n-2) + (n-1)^c
T(n) = T(n-2) + n^c + (n-1)^c
T(n-2) = T(n-3) + (n-2)^c
T(n) = T(n-3) + n^c + (n-1)^c + (n-2)^c
T(n) = T(n-k) + n^c + (n-1)^c + .... + (n-k+1)^c
Suppose k = n-1, then:
T(n) = T(1) + n^c + (n-1)^c + (n-n+1+1)^c
T(n) = n^c + (n-1)^c + 2^c + 1
ただし、これが正しいかどうかはわかりません。さらに、これから Big O を導き出す方法について、いくつかのガイダンスをいただければ幸いです。どうもありがとう!