pyspark 1.4.1 でSpark 1.4ウィンドウ関数を使用しようとしています
しかし、ほとんどの場合、エラーまたは予期しない結果が得られます。これはうまくいくはずだと思う非常に簡単な例です:
from pyspark.sql.window import Window
import pyspark.sql.functions as func
l = [(1,101),(2,202),(3,303),(4,404),(5,505)]
df = sqlContext.createDataFrame(l,["a","b"])
wSpec = Window.orderBy(df.a).rowsBetween(-1,1)
df.select(df.a, func.rank().over(wSpec).alias("rank"))
==> Failure org.apache.spark.sql.AnalysisException: Window function rank does not take a frame specification.
df.select(df.a, func.lag(df.b,1).over(wSpec).alias("prev"), df.b, func.lead(df.b,1).over(wSpec).alias("next"))
===> org.apache.spark.sql.AnalysisException: Window function lag does not take a frame specification.;
wSpec = Window.orderBy(df.a)
df.select(df.a, func.rank().over(wSpec).alias("rank"))
===> org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException: One or more arguments are expected.
df.select(df.a, func.lag(df.b,1).over(wSpec).alias("prev"), df.b, func.lead(df.b,1).over(wSpec).alias("next")).collect()
[Row(a=1, prev=None, b=101, next=None), Row(a=2, prev=None, b=202, next=None), Row(a=3, prev=None, b=303, next=None)]
ご覧のとおり、rowsBetween
フレーム指定を追加すると、ウィンドウ関数rank()
もlag/lead()
それを認識しません:「ウィンドウ関数はフレーム指定を取りません」。
rowsBetween
フレームの仕様を少なくとも省略した場合、lag/lead()
例外はスローされませんが、(私にとっては) 予期しない結果が返されます: always None
。そして、rank()
まだ別の例外で機能しません。
ウィンドウ関数を正しく取得するのを手伝ってくれる人はいますか?
アップデート
よし、これは pyspark のバグのように見え始めます。純粋な Spark (Scala、spark-shell) で同じテストを用意しました。
import sqlContext.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
val l: List[Tuple2[Int,Int]] = List((1,101),(2,202),(3,303),(4,404),(5,505))
val rdd = sc.parallelize(l).map(i => Row(i._1,i._2))
val schemaString = "a b"
val schema = StructType(schemaString.split(" ").map(fieldName => StructField(fieldName, IntegerType, true)))
val df = sqlContext.createDataFrame(rdd, schema)
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
val wSpec = Window.orderBy("a").rowsBetween(-1,1)
df.select(df("a"), rank().over(wSpec).alias("rank"))
==> org.apache.spark.sql.AnalysisException: Window function rank does not take a frame specification.;
df.select(df("a"), lag(df("b"),1).over(wSpec).alias("prev"), df("b"), lead(df("b"),1).over(wSpec).alias("next"))
===> org.apache.spark.sql.AnalysisException: Window function lag does not take a frame specification.;
val wSpec = Window.orderBy("a")
df.select(df("a"), rank().over(wSpec).alias("rank")).collect()
====> res10: Array[org.apache.spark.sql.Row] = Array([1,1], [2,2], [3,3], [4,4], [5,5])
df.select(df("a"), lag(df("b"),1).over(wSpec).alias("prev"), df("b"), lead(df("b"),1).over(wSpec).alias("next"))
====> res12: Array[org.apache.spark.sql.Row] = Array([1,null,101,202], [2,101,202,303], [3,202,303,404], [4,303,404,505], [5,404,505,null])
rowsBetween
Scala では を適用できませんが、 と を省略した場合は両方とも期待どおりに動作しrank()
ます。lag()/lead()
rowsBetween