次の常微分方程式を (m_0 について) 数値的に解こうとしています。
dm0/dx=(((1-x)*(x*(2-x))**(1.5))/(k+x)**2)*(((x*(2-x))/3.0)*(dw/dx)**2 + ((8*(k+1))/(3*(k+x)))*w**2)
w と dw/dx の値は、ルンゲクッタの 4 次を使用して既に数値的に求められており、k は固定された係数です。w と dw/dx の値を外部ファイルから呼び出すコードを作成し、それらを配列に整理し、関数で配列を呼び出してから統合を実行しました。私の結果は期待したものではありません:(、何が悪いのかわかりません。誰かが私に手を差し伸べることができれば、それは非常にありがたいです。ありがとう!
from math import sqrt
from numpy import array,zeros,loadtxt
from printSoln import *
from run_kut4 import *
m = 1.15 # Just a constant.
k = 3.0*sqrt(1.0-(1.0/m))-1.0 # k in terms of m.
omegas = loadtxt("omega.txt",float) # Import values of w
domegas = loadtxt("domega.txt",float) # Import values of dw/dx
w = [] # Defines the array w to store the values w^2
s = 0.0
for s in omegas:
w.append(s**2) # Calculates the values w**2
omeg = array(w,float) # Array to store the value of w**2
dw = [] # Defines the array dw to store the values dw**2
t = 0.0
for t in domegas:
dw.append(t**2) # Calculates the values for dw**2
domeg = array(dw,float) # Array to store the values of dw**2
x = 1.0e-12 # Starting point of integration
xStop = (2.0 - k)/3.0 # Final point of integration
def F(x,y): # Define function to be integrated
F = zeros(1)
for i in domeg: # Loop to call w^2, (dw/dx)^2
for j in omeg:
F[0] = (((1.0-x)*(x*(2.0-x))**(1.5))/(k+x)**2)*((1.0/3.0)*x* (2.0-x)*domeg[i] + (8.0*(k+1.0)*omeg[j])/(3.0*(k+x)))
return F
y = array([((32.0*sqrt(2.0)*(k+1.0)*(x**2.5))/(15.0*(k**3)))]) # Initial condition for m_{0}
h = 1.0e-5 # Integration step
freq = 0 # Prints only initial and final values
X,Y = integrate(F,x,y,xStop,h) # Calls Runge-Kutta 4
printSoln(X,Y,freq) # Prints solution