9

OSRM (OpenStreetMap Routing Machine) のインスタンスを使用して、さまざまなポイントからの距離と時間を評価しています。API を使用して、必要な情報、特に実際のルートをポリラインとして取得できます。

今日まで、始点と終点の間に直線を描いてきました。

segments(
         lon_patient,lat_patient,lon_lieu,lat_lieu,col = transp_time,lwd = 3
         )

次に、ポリラインをプロットします。ただし、エンコードされています ( https://github.com/Project-OSRM/osrm-backend/wiki/Server-api#response-2 )。どうすればそれを描くことができますか?

ありがとう!

4

1 に答える 1

17

これを実現する 1 つの (簡単な) 方法は、mapbox github リポジトリからpolyline.jsファイルをダウンロードし、V8 パッケージを使用して面倒な作業を行うことです。

library(V8)

ctx <- new_context()
ctx$source("polyline.js")
ctx$call("polyline.decode", "_p~iF~ps|U_ulLnnqC_mqNvxq`@")

##        [,1]     [,2]
## [1,] 38.500 -120.200
## [2,] 40.700 -120.950
## [3,] 43.252 -126.453

使用できる緯度/経度のペアのマトリックスを返します。

ただし、長期的には、純粋な R/Rcpp の回答の方が適切です。

アップデート

ここに一つ!https://gist.github.com/diegovalle/916889 (私はsを追加し、いくつかの冗長な割り当てrequireを組み合わせました):0

DecodeLineR <- function(encoded) {
  require(bitops)
  require(stringr)
  len = str_length(encoded)
  encoded <- strsplit(encoded, NULL)[[1]]
  index = 1
  N <- 100000
  df.index <- 1
  array = matrix(nrow = N, ncol = 2)
  lat <- dlat <- lng <- dlnt <- b <- shift <- result <- 0

  while(index <= len) {

    shift <- result <- 0

    repeat {
      b = as.integer(charToRaw(encoded[index])) - 63
      index <- index + 1
      result = bitOr(result, bitShiftL(bitAnd(b, 0x1f), shift))
      shift = shift + 5
      if(b < 0x20) break
    }
    dlat = ifelse(bitAnd(result, 1),
                 -(result - (bitShiftR(result, 1))),
                 bitShiftR(result, 1))
    lat = lat + dlat;

    shift <- result <- b <- 0

    repeat {
      b = as.integer(charToRaw(encoded[index])) - 63
      index <- index + 1
      result = bitOr(result, bitShiftL(bitAnd(b, 0x1f), shift))
      shift = shift + 5
      if(b < 0x20) break
    }
    dlng = ifelse(bitAnd(result, 1),
                  -(result - (bitShiftR(result, 1))),
                  bitShiftR(result, 1))
    lng = lng + dlng

    array[df.index,] <- c(lat = lat * 1e-05, lng = lng * 1e-5)
    df.index <- df.index + 1
  }

  ret <- data.frame(array[1:df.index - 1,])
  names(ret) <- c("lat", "lng")
  return(ret)
}

DecodeLineR("_p~iF~ps|U_ulLnnqC_mqNvxq`@")

##      lat      lng
## 1 38.500 -120.200
## 2 40.700 -120.950
## 3 43.252 -126.453

これにより、データフレームとマトリックスが得られます。そして、純粋なRです。どちらが高速になるかはわかりません(速度が必要な場合)。

更新 #2

ここには別の純粋な R 実装があります: http://s4rdd.blogspot.com/2012/12/google-maps-api-decoding-polylines-for.htmlで、上記のものよりもはるかに高速です (ベンチマークについては以下を参照)。

decodeLine <- function(encoded){
  require(bitops)

  vlen <- nchar(encoded)
  vindex <- 0
  varray <- NULL
  vlat <- 0
  vlng <- 0

  while(vindex < vlen){
    vb <- NULL
    vshift <- 0
    vresult <- 0
    repeat{
      if(vindex + 1 <= vlen){
        vindex <- vindex + 1
        vb <- as.integer(charToRaw(substr(encoded, vindex, vindex))) - 63  
      }

      vresult <- bitOr(vresult, bitShiftL(bitAnd(vb, 31), vshift))
      vshift <- vshift + 5
      if(vb < 32) break
    }

    dlat <- ifelse(
      bitAnd(vresult, 1)
      , -(bitShiftR(vresult, 1)+1)
      , bitShiftR(vresult, 1)
    )
    vlat <- vlat + dlat

    vshift <- 0
    vresult <- 0
    repeat{
      if(vindex + 1 <= vlen) {
        vindex <- vindex+1
        vb <- as.integer(charToRaw(substr(encoded, vindex, vindex))) - 63        
      }

      vresult <- bitOr(vresult, bitShiftL(bitAnd(vb, 31), vshift))
      vshift <- vshift + 5
      if(vb < 32) break
    }

    dlng <- ifelse(
      bitAnd(vresult, 1)
      , -(bitShiftR(vresult, 1)+1)
      , bitShiftR(vresult, 1)
    )
    vlng <- vlng + dlng

    varray <- rbind(varray, c(vlat * 1e-5, vlng * 1e-5))
  }
  coords <- data.frame(varray)
  names(coords) <- c("lat", "lon")
  coords
}

以下は、 https : //mapzen.com/documentation/mobility/decoding/ の好意による Rcpp/C++11 バージョンです。

#include <Rcpp.h>
#include <vector>

using namespace Rcpp;

// [[Rcpp::plugins(cpp11)]]

// [[Rcpp::export]]
DataFrame decode_polyline(const std::string& encoded) {
  size_t i = 0;     // what byte are we looking at

  constexpr double kPolylinePrecision = 1E6;
  constexpr double kInvPolylinePrecision = 1.0 / kPolylinePrecision;

  auto deserialize = [&encoded, &i](const int previous) {
    int byte, shift = 0, result = 0;
    do {
      byte = static_cast<int>(encoded[i++]) - 63;
      result |= (byte & 0x1f) << shift;
      shift += 5;
    } while (byte >= 0x20);
    return previous + (result & 1 ? ~(result >> 1) : (result >> 1));
  };

  std::vector<double> lonv, latv;
  int last_lon = 0, last_lat = 0;
  while (i < encoded.length()) {
    int lat = deserialize(last_lat);
    int lon = deserialize(last_lon);

    latv.emplace_back(static_cast<float>(static_cast<double>(lat) * kInvPolylinePrecision));
    lonv.emplace_back(static_cast<float>(static_cast<double>(lon) * kInvPolylinePrecision));

    last_lon = lon;
    last_lat = lat;
  }

  return DataFrame::create(_["lon"] = lonv, _["lat"] = latv);
}

それを保存して、次のようにpolyline.cppします。

Rcpp::sourceCpp("polyline.cpp")

次に、次のことができます。

decode_polyline("_p~iF~ps|U_ulLnnqC_mqNvxq`@")
##        lon    lat
## 1 -120.200 38.500
## 2 -120.950 40.700
#3 3 -126.453 43.252

ベンチマーク

2 つの R 関数をグローバル環境にソースし、javascript と C++ の実装に相当する js と C++ を実行しました。

ここに画像の説明を入力

DecodeLineR最大値は、使用するマイクロベンチマーク パラメータに関係なく、かなり「そこに」あります。decodeLine()純粋な R バージョンは、または /C++11 の依存関係が発生することを保証しないほど十分にパフォーマンスが高いようにV8見えRcppますが、YMMV.

最終更新 (MOAR ベンチマーク)

この関数を新しいベンチマークに組み込み、googleway::decode_pl()より長いポリラインを使用しました。ベンチマーク コードは下にあり、新しいプロットはその下にあります。

library(microbenchmark)
library(Rcpp)
library(inline)
library(V8)
library(googleway)
library(ggplot2)

sourceCpp("polyline.cpp")

ctx <- v8()
ctx$source("polyline.js")

source("DecodeLineR.R")
source("decodeline.R")

line_str <- "{ae{HntiQtCcDzG_I|^uc@rFgHhC{CxAiA~AaA~BkAvB}A|F_G|AgBbBkCtAwCd@sA|BoIVw@Pc@|@gBt@}@|@y@lCwBvA_B`@k@~@aBt@iBlAaE~@oEp@sDX{BP_BJaDAcEIeCe@gHo@yMUaEk@uDm@iD]mCAwBNsDXyDL}@nByIZyCt@cLr@gNB_ABoEAkFJmDTkBVeAZ_Af@gAnDwF|@gBbAoChHgUPWlAT`@B|@GbE_@dAW`Cu@vBe@tDs@xD{@`Bg@bBq@hBaAtB}@dCi@bF}@jBg@pBeAj@SNE\\C^@\\DbAZ`Ah@~C`A\\H|ALzAFLA^Gl@UdBgAjBaBZSh@Qz@MjD_@`FoAtCa@j@Ez@DxE|@xF\\nBP~@TxHvBf@Tb@\\pBvC\\^`@XxAf@fBT|BDfAIr@MfBe@rBa@rBMvBYxBg@xA_@^Ir@@NF|@l@nBfAjAj@dBV`Bb@lBbAbB~ALPhC`FV`@n@z@^VNBX?LGZa@d@eAp@qAt@Sx@Cz@G\\IZOhCcBb@c@T]jA_CrE_HfEiFz@}@p@k@|@o@`C{A`A{@rBwBx@oAbByCp@wArAoDLWxA}BhAcBjAqAlAiB~AaDr@sBp@{CD[TkC^}FZyD^oCx@gF`@qAh@kAz@yAtAgBpD_E|JoKdDuEjBcCfC{ExCqGdAgBlBuBrAyBpEkIpEsI\\]^YbAg@|GaBzKeEfBe@lCW`AQr@U|A_AtAkAhDyCpAeA|Aq@`EeCrDgBvA{@tD}C`BmAzBm@t@QvAQxBOl@Q~Ai@~BsAlCcB"

microbenchmark(
  googleway = decode_pl(line_str),
  rcpp = decode(line_str),
  js = ctx$call("polyline_decode", line_str),
  DecodeLineR = DecodeLineR(line_str),
  decodeLine = decodeLine(line_str),
  control=list(warmup=50),
  times=1000
) -> mb

mb
## Unit: microseconds
##         expr      min         lq       mean    median        uq        max neval cld
##    googleway  404.322   471.8475   817.8312   526.270   579.095 135564.973  1000 a  
##         rcpp  253.062   302.9550   363.9325   359.765   401.054    831.699  1000 a  
##           js 2793.677  3099.3390  3359.6190  3219.312  3427.636  15580.609  1000  b 
##  DecodeLineR 9366.714  9656.4140 12029.3991 10128.676 12570.216 181536.940  1000   c
##   decodeLine 9907.869 10218.0465 11413.5732 10655.949 11491.305 150588.501  1000   c

update_geom_defaults("violin", list(fill="maroon"))

autoplot(mb) +
  scale_y_log10(name="Time [microseconds]", label=scales::comma) +
  hrbrmisc::theme_hrbrmstr(grid="X")

ここに画像の説明を入力

于 2015-09-09T10:58:58.210 に答える