Display_Info は SQL ストアド プロシージャであり、3 つの入力パラメーターと 3 つの出力パラメーターがあります。info_Data (シリアル化された情報データには、Unicode 値と null 値も含まれる場合があります) 出力パラメーターの 1 つは、以前は NVARCHAR(1000) 型でした。info_Data のサイズが大きくなったため、NVARCHAR(MAX) 型に変更されました。NVARCHAR(1000) のような場合、クライアント アプリケーションでストアド プロシージャを実行しても問題はありませんでしたが、NVARCHAR(MAX) に変更した後、クライアント アプリケーションは「少なくとも 1 つのパラメーターにサポートされていない型が含まれていました」のようなエラーをスローしています。 .」。SQL ストアド プロシージャの設計は次のとおりです。
Create Display_Info @channel NVARCHAR(100)
,@infoType INT
,@locationId NVARCHAR(50)
,@Id BIGINT OUTPUT
,@infoData NVARCHAR(MAX) OUTPUT
,@infoStatus TINYINT OUTPUT
AS
...
ストアド プロシージャを実行するクライアント アプリケーションの方法は、
try
{
SACommand conncmd;
CheckConnection();
conncmd.setConnection(&mConn);
std::wstring cmdText = COMMAND_TEXT("ReadMessage");
conncmd.setCommandText(cmdText.c_str());
conncmd.Param("channel").setAsString() = SAString(channel.c_str(), (int)channel.length());
conncmd.Param("infoType").setAsNumeric() = SANumeric((sa_int64_t)type);
conncmd.Param("locationId").setAsString() = SAString(locationId.c_str(), (int)locationId.length());
conncmd.Execute();
std::wstring Id = conncmd.Param(COMMAND_TEXT("Id")).asString();
infodata = conncmd.Param(COMMAND_TEXT("info_Data")).asString();
}
catch (SAException &e)
{
std::string errorMessage = (mb_twine)e.ErrText();
std::cout << "\n" <<errorMessage;
}
サンプル入力/出力:
infoDataシリアライズ入力:全長5191
Ä(Á(¼(Protocol Buffers is a method of serializing structured data. It is useful in developing programs to communicate with each other over a wire or for storing data. The method involves an interface description language that describes the structure of some data and a program that generates source code from that description for generating or parsing a stream of bytes that represents the structured data.Google developed Protocol Buffers for use internally and has made protocol compilers for C++, Java and Python available to the public under a free software, open source license. Various other language implementations are also available, including C#, JavaScript, Go, Perl, PHP, Ruby, and Scala.[1]The design goals for Protocol Buffers emphasized simplicity and performance. In particular, it was designed to be smaller and faster than XML.[2] Third parties have reported that Protocol Buffers outperforms the standardized Abstract Syntax Notation One with respect to both message size and decoding performance.[3]Protocol Buffers is widely used at Google for storing and interchanging all kinds of structured information. The method serves as a basis for a custom remote procedure call (RPC) system that is used for nearly all inter-machine communication at Google.[4]Protocol Buffers is very similar to the Apache Thrift protocol (used by Facebook for example), except that the public Protocol Buffers implementation does not include a concrete RPC protocol stack to use for defined services.A software developer defines data structures (called messages) and services in a proto definition file (.proto) and compiles it with protoc. This compilation generates code that can be invoked by a sender or recipient of these data structures. For example, example.proto will produce example.pb.cc and example.pb.h, which will define C++ classes for each message and service that example.proto defines.Canonically, messages are serialized into a binary wire format which is compact, forwards-compatible, and backwards-compatible, but not self-describing (that is, there is no way to tell the names, meaning, or full datatypes of fields without an external specification). There is no defined way to include or refer to such an external specification (schema) within a Protocol Buffers file. The officially supported implementation includes an ASCII serialization format,[5] but this format â though self-describing â loses the forwards-and-backwards-compatibility behavior, and is thus not a good choice for applications other than debugging.Though the primary purpose of Protocol Buffers is to facilitate network communication, its simplicity and speed make Protocol Buffers an alternative to data-centric C++ classes and structs, especially where interoperability with other languages or systems might be needed in the future.A schema for a particular use of protocol buffers associates data types with field names, using integers to identify each field. (The protocol buffer data contains only the numbers, not the field names, providing some bandwidth / storage savings compared with systems that include the field names in the data.)//polyline.protomessage Point { required int32 x = 1; required int32 y = 2; optional string label = 3; } message Line { required Point start = 1; required Point end = 2; optional string label = 3; } message Polyline { repeated Point point = 1; optional string label = 2; } The "Point" message defines two mandatory data items, x and y. The data item label is optional. Each data item has a tag. The tag is defined after the equal sign. For example, x has the tag 1. The Line and "Polyline" messages, which both use Point, demonstrate how composition works in Protocol Buffers. Polyline has a repeated field, which behaves like a vector. This schema can subsequently be compiled for use by one or more programming languages. Google provides a compiler called protoc which can produce output for C++, Java or Python. Other schema compilers are available from other sources to create language-dependent output for over 20 other languages.[6] For example, after a C++ version of the protocol buffer schema above is produced, a C++ source code file, polyline.cpp, can use the message objects as follows: // polyline.cpp#include polyline.pb.h // generated by calling protoc polyline.proto Line* createNewLine(const std::string& name) { // create a line from (10, 20) to (30, 40) Line* line = new Line; line->mutable_start()->set_x(10); line->mutable_start()->set_y(20); line->mutable_end()->set_x(30); line->mutable_end()->set_y(40); line->set_label(name); return line; } Polyline* createNewPolyline() { // create a polyline with points at (10,10) and (20,20) Polyline* polyline = new Polyline; Point* point1 = polyline->add_point(); point1->set_x(10); point1->set_y(10); Point* point2 = polyline->add_point(); point2->set_x(20); point2->set_y(20); return polyline; }
NVARCHAR(1000)の場合、infoData 値: 全長 - 1003
Ä(Á(¼(Protocol Buffers is a method of serializing structured data. It is useful in developing programs to communicate with each other over a wire or for storing data. The method involves an interface description language that describes the structure of some data and a program that generates source code from that description for generating or parsing a stream of bytes that represents the structured data.Google developed Protocol Buffers for use internally and has made protocol compilers for C++, Java and Python available to the public under a free software, open source license. Various other language implementations are also available, including C#, JavaScript, Go, Perl, PHP, Ruby, and Scala.[1]The design goals for Protocol Buffers emphasized simplicity and performance. In particular, it was designed to be smaller and faster than XML.[2] Third parties have reported that Protocol Buffers outperforms the standardized Abstract Syntax Notation One with respect to both message size and dec
NVARCHAR(4000)の場合、infoData : 全長 - 4084
Ä(Á(¼(Protocol Buffers is a method of serializing structured data. It is useful in developing programs to communicate with each other over a wire or for storing data. The method involves an interface description language that describes the structure of some data and a program that generates source code from that description for generating or parsing a stream of bytes that represents the structured data.Google developed Protocol Buffers for use internally and has made protocol compilers for C++, Java and Python available to the public under a free software, open source license. Various other language implementations are also available, including C#, JavaScript, Go, Perl, PHP, Ruby, and Scala.[1]The design goals for Protocol Buffers emphasized simplicity and performance. In particular, it was designed to be smaller and faster than XML.[2] Third parties have reported that Protocol Buffers outperforms the standardized Abstract Syntax Notation One with respect to both message size and decoding performance.[3]Protocol Buffers is widely used at Google for storing and interchanging all kinds of structured information. The method serves as a basis for a custom remote procedure call (RPC) system that is used for nearly all inter-machine communication at Google.[4]Protocol Buffers is very similar to the Apache Thrift protocol (used by Facebook for example), except that the public Protocol Buffers implementation does not include a concrete RPC protocol stack to use for defined services.A software developer defines data structures (called messages) and services in a proto definition file (.proto) and compiles it with protoc. This compilation generates code that can be invoked by a sender or recipient of these data structures. For example, example.proto will produce example.pb.cc and example.pb.h, which will define C++ classes for each message and service that example.proto defines.Canonically, messages are serialized into a binary wire format which is compact, forwards-compatible, and backwards-compatible, but not self-describing (that is, there is no way to tell the names, meaning, or full datatypes of fields without an external specification). There is no defined way to include or refer to such an external specification (schema) within a Protocol Buffers file. The officially supported implementation includes an ASCII serialization format,[5] but this format â though self-describing â loses the forwards-and-backwards-compatibility behavior, and is thus not a good choice for applications other than debugging.Though the primary purpose of Protocol Buffers is to facilitate network communication, its simplicity and speed make Protocol Buffers an alternative to data-centric C++ classes and structs, especially where interoperability with other languages or systems might be needed in the future.A schema for a particular use of protocol buffers associates data types with field names, using integers to identify each field. (The protocol buffer data contains only the numbers, not the field names, providing some bandwidth / storage savings compared with systems that include the field names in the data.)//polyline.protomessage Point { required int32 x = 1; required int32 y = 2; optional string label = 3; } message Line { required Point start = 1; required Point end = 2; optional string label = 3; } message Polyline { repeated Point point = 1; optional string label = 2; } The "Point" message defines two mandatory data items, x and y. The data item label is optional. Each data item has a tag. The tag is defined af
when NVARCHAR(MAX) : 同じinfoData入力で コマンド実行後、
conncmd.Execute(); // after this statement
次のようなエラーがスローされます
At least one parameter contained a type that was not supported.
このエラーから、このタイプは今後サポートされないことが非常に明確にわかります。また、SQL Server Management Studio でストアド プロシージャを明示的に実行している間。正常に動作しています。切り捨てなしで完全な infoData を取得しました。
USE [TestDB]
GO
DECLARE @return_value int,
@Id bigint,
@infoData nvarchar(max),
@infoStatus tinyint
EXEC @return_value = "DisplayInfo"
@channel = N'telephoneMessage',
@infoType = 1,
@locationId = N'F6C8B935',
@Id = @Id OUTPUT,
@infoData = @infoData OUTPUT,
@infoStatus = @infoStatus OUTPUT
SELECT @Id as N'@PayloadId',
@infoData as N'@MessageData',
@infoStatus as N'@Status'
SELECT 'Return Value' = @return_value
GO
また、NVARCHAR(MAX) の最大文字数は何ですか? これは、「タイプ NVARCHAR(MAX) の列の最大サイズは 2 GB のストレージです」と言っています。しかし、なぜこの場合、 NVARCHAR(MAX) がType not supportedとして表示されているのかわかりません。エラーを正確に修正するのに役立つように、使用している SSMS のバージョンについて言及しました。
SQL サーバー Management Studio 2008 R2。V 10.50.2550.0: SQLAPI++ - 3.8.3
損失や切り捨てのない完全な info_Data を取得するのを手伝ってください。
前もって感謝します。