ここでは Caffe の例に従って、ConvNet から畳み込みカーネルをプロットしています。以下にカーネルの画像を添付しましたが、例のカーネルとはまったく異なります。私は例に正確に従っていますが、問題が何であるか知っている人はいますか?
私のネットは一連のシミュレートされた画像 (2 つのクラス) でトレーニングされており、ネットのパフォーマンスはかなり良好で、約 80% のテスト精度です。
layer {
name: "input"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "/tmp/stage5/mean/mean.binaryproto"
}
data_param {
source: "/tmp/stage5/train/train-lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "input"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mean_file: "/tmp/stage5/mean/mean.binaryproto"
}
data_param {
source: "/tmp/stage5/validation/validation-lmdb"
batch_size: 10
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
convolution_param {
num_output: 40
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool1"
top: "ip1"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}