JuMP と NLopt ソルバーを使用して、Julia の線形回帰設定で正規分布変数の ML 推定を実行しようとしています。
ここに良い例がありますが、回帰パラメーター (勾配) を推定しようとすると、特にパラメーター空間が大きくなると、コードを書くのが非常に面倒になります。
もっと簡潔に書く方法を誰かが考えているかもしれません。ここに私のコードがあります:
#type definition to store data
type data
n::Int
A::Matrix
β::Vector
y::Vector
ls::Vector
err::Vector
end
#generate regression data
function Data( n = 1000 )
A = [ones(n) rand(n, 2)]
β = [2.1, 12.9, 3.7]
y = A*β + rand(Normal(), n)
ls = inv(A'A)A'y
err = y - A * ls
data(n, A, β, y, ls, err)
end
#initialize data
d = Data()
println( var(d.y) )
function ml( )
m = Model( solver = NLoptSolver( algorithm = :LD_LBFGS ) )
@defVar( m, b[1:3] )
@defVar( m, σ >= 0, start = 1.0 )
#this is the working example.
#As you can see it's quite tedious to write
#and becomes rather infeasible if there are more then,
#let's say 10, slope parameters to estimate
@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\cont. next line
-sum{(d.y[i]-d.A[i,1]*b[1] \\
-d.A[i,2]*b[2] \\
-d.A[i,3]*b[3])^2, i=1:d.n}/(2σ^2) )
#julia returns:
> slope: [2.14,12.85,3.65], variance: 1.04
#which is what is to be expected
#however:
#this is what I would like the code to look like:
@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\
-sum{(d.y[i]-(d.A[i,j]*b[j]))^2, \\
i=1:d.n, j=1:3}/(2σ^2) )
#I also tried:
@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\
-sum{sum{(d.y[i]-(d.A[i,j]*b[j]))^2, \\
i=1:d.n}, j=1:3}/(2σ^2) )
#but unfortunately it returns:
> slope: [10.21,18.89,15.88], variance: 54.78
solve(m)
println( getValue(b), " ", getValue(σ^2) )
end
ml()
何か案は?
編集
Rezaが指摘したように、実際の例は次のとおりです。
@setNLObjective( m, Max,-(d.n/2)*log(2π*σ^2) \\
-sum{(d.y[i]-sum{d.A[i,j]*b[j],j=1:3})^2,
i=1:d.n}/(2σ^2) )