次のモデルを推定しようとしています
ここで、一様事前確率を提供 し、尤度をコード化し
ます。後者はこの論文からのもので、次のようになります。
theano/pymc3 の実装では、first_term
との rhs の第 1 項と第 2 項を計算していsecond_term
ます。最後logp
に、サンプル全体を合計します。
Theano は、自分自身でいくつかの出力を生成していますが、それを pymc3 モデルに統合すると、次のエラーが表示されます。
TypeError: ('Bad input argument to theano function with name "<ipython-input-90-a5304bf41c50>:27" at index 0(0-based)', 'Expected an array-like object, but found a Variable: maybe you are trying to call a function on a (possibly shared) variable instead of a numeric array?')
問題は、pymc3 変数を theano に供給する方法だと思います。
from pymc3 import Model, Uniform, DensityDist
import theano.tensor as T
import theano
import numpy as np
p_test, theta_test = .1, .1
X = np.asarray([[1,2,3],[1,2,3]])
### theano test
theano.config.compute_test_value = 'off'
obss = T.matrix('obss')
p, theta = T.scalar('p'), T.scalar('theta')
def first_term(obs, p, theta):
x, tx, n = obs[0], obs[1], obs[2]
first_comp = p ** x * (1 - p) ** (n - x) * (1 - theta) ** n
return(first_comp)
def second_term(obs, p, theta):
x, tx, n = obs[0], obs[1], obs[2]
components, updates = theano.scan(
lambda t, p, theta, x, tx: p ** x * (1 - theta) ** (tx-x+t) * theta * (1 - theta) ** (tx + t),
sequences=theano.tensor.arange(n), non_sequences = [p, theta, x, tx]
)
return(components)
def logp(X, p_hat, theta_hat):
contributions, updates = theano.scan(lambda obs, p, theta: first_term(obs, p, theta) + T.sum( second_term(obs, p, theta) ) ,
sequences = obss, non_sequences = [p, theta]
)
ll = contributions.sum()
get_ll = theano.function(inputs = [obss, p, theta], outputs = ll)
return(get_ll(X, p_hat , theta_hat))
print( logp( X, p_test, theta_test ) ) # It works!
### pymc3 implementation
with Model() as bg_model:
p = Uniform('p', lower = 0, upper = 1)
theta = Uniform('theta', lower = 0, upper = .2)
def first_term(obs, p, theta):
x, tx, n = obs[0], obs[1], obs[2]
first_comp = p ** x * (1 - p) ** (n - x) * (1 - theta) ** n
return(first_comp)
def second_term(obs, p, theta):
x, tx, n = obs[0], obs[1], obs[2]
components, updates = theano.scan(
lambda t, p, theta, x, tx: p ** x * (1 - theta) ** (tx-x+t) * theta * (1 - theta) ** (tx + t),
sequences=theano.tensor.arange(n), non_sequences = [p, theta, x, tx]
)
return(components)
def logp(X):
contributions, updates = theano.scan(lambda obs, p, theta: first_term(obs, p, theta) + T.sum( second_term(obs, p, theta) ) ,
sequences = obss, non_sequences = [p, theta]
)
ll = contributions.sum()
get_ll = theano.function(inputs = [obss, p, theta], outputs = ll)
return(get_ll(X, p, theta))
y = pymc3.DensityDist('y', logp, observed = X) # Nx4 y = f(f,x,tx,n | p, theta)
私の最初の推測は で変更するlogp
ことreturn(get_ll(X, p.eval(), theta.eval()))
でしたが、theanop_interval
はグラフに謎の欠落があると文句を言いました。どんな手掛かり?