5

datetimeindexed の 2 つのデータフレームがあります。1 つはこれらの日時 ( df1) のいくつかが欠落しており、もう 1 つは完全であり (このシリーズにギャップのない定期的なタイムスタンプがあります)、NaN( df2) でいっぱいです。

df2df1からの値を のインデックスに一致させようとしてNaNdatetimeindexますdf1

例:

In  [51]: df1
Out [51]:                       value
          2015-01-01 14:00:00   20
          2015-01-01 15:00:00   29
          2015-01-01 16:00:00   41
          2015-01-01 17:00:00   43
          2015-01-01 18:00:00   26
          2015-01-01 19:00:00   20
          2015-01-01 20:00:00   31
          2015-01-01 21:00:00   35
          2015-01-01 22:00:00   39
          2015-01-01 23:00:00   17
          2015-03-01 00:00:00   6
          2015-03-01 01:00:00   37
          2015-03-01 02:00:00   56
          2015-03-01 03:00:00   12
          2015-03-01 04:00:00   41
          2015-03-01 05:00:00   31
          ...   ...

          2018-12-25 23:00:00   41

          <34843 rows × 1 columns>

In  [52]: df2 = pd.DataFrame(data=None, index=pd.date_range(freq='60Min', start=df1.index.min(), end=df1.index.max()))
          df2['value']=np.NaN
          df2
Out [52]:                       value
          2015-01-01 14:00:00   NaN
          2015-01-01 15:00:00   NaN
          2015-01-01 16:00:00   NaN
          2015-01-01 17:00:00   NaN
          2015-01-01 18:00:00   NaN
          2015-01-01 19:00:00   NaN
          2015-01-01 20:00:00   NaN
          2015-01-01 21:00:00   NaN
          2015-01-01 22:00:00   NaN
          2015-01-01 23:00:00   NaN
          2015-01-02 00:00:00   NaN
          2015-01-02 01:00:00   NaN
          2015-01-02 02:00:00   NaN
          2015-01-02 03:00:00   NaN
          2015-01-02 04:00:00   NaN
          2015-01-02 05:00:00   NaN
          ...                   ...
          2018-12-25 23:00:00   NaN

          <34906 rows × 1 columns>

を使用df2.combine_first(df1)すると、 と同じデータが返されますdf1.reindex(index= df2.index)。これにより、データが存在しないはずのギャップが NaN ではなく何らかの値で埋められます。

In  [53]: Result = df2.combine_first(df1)
          Result
Out [53]:                       value
          2015-01-01 14:00:00   20
          2015-01-01 15:00:00   29
          2015-01-01 16:00:00   41
          2015-01-01 17:00:00   43
          2015-01-01 18:00:00   26
          2015-01-01 19:00:00   20
          2015-01-01 20:00:00   31
          2015-01-01 21:00:00   35
          2015-01-01 22:00:00   39
          2015-01-01 23:00:00   17
          2015-01-02 00:00:00   35
          2015-01-02 01:00:00   53
          2015-01-02 02:00:00   28
          2015-01-02 03:00:00   48
          2015-01-02 04:00:00   42
          2015-01-02 05:00:00   51
          ...                   ...
          2018-12-25 23:00:00   41

          <34906 rows × 1 columns>

これは私が得たいと思っていたものです:

Out [53]:                       value
          2015-01-01 14:00:00   20
          2015-01-01 15:00:00   29
          2015-01-01 16:00:00   41
          2015-01-01 17:00:00   43
          2015-01-01 18:00:00   26
          2015-01-01 19:00:00   20
          2015-01-01 20:00:00   31
          2015-01-01 21:00:00   35
          2015-01-01 22:00:00   39
          2015-01-01 23:00:00   17
          2015-01-02 00:00:00   NaN
          2015-01-02 01:00:00   NaN
          2015-01-02 02:00:00   NaN
          2015-01-02 03:00:00   NaN
          2015-01-02 04:00:00   NaN
          2015-01-02 05:00:00   NaN
          ...                   ...
          2018-12-25 23:00:00   41

          <34906 rows × 1 columns>

なぜこれが起こっているのか、そしてこれらの値がどのように満たされるかを設定する方法について、誰かが光を当てることができますか?

4

1 に答える 1

1

IIUC が必要です。これは、不規則で定期的な頻度が必要なためです。resample df1frequency

print df1.index.freq
None

print Result.index.freq
<60 * Minutes>

EDIT1 -docの代わりに
function を使用できますasfreqresampleresample vs asfreq

EDIT2リサンプリング後は と同じなので、最初はうまくいかなかった
と思います。しかし、私は試してみると、異なる結果が得られます - vs . だから私は値を持つ行を見つけようとすると、それが返されます。resampleResultdf1print df1.info()print Result.info()34857 entries34920 entriesNaN63 rows

だから私はresampleうまくいくと思います。

import pandas as pd

df1 = pd.read_csv('test/GapInTimestamps.csv', sep=",", index_col=[0], parse_dates=[0])
print df1.head()

#                     value
#Date/Time                 
#2015-01-01 00:00:00     52
#2015-01-01 01:00:00      5
#2015-01-01 02:00:00     12
#2015-01-01 03:00:00     54
#2015-01-01 04:00:00     47
print df1.info()

#<class 'pandas.core.frame.DataFrame'>
#DatetimeIndex: 34857 entries, 2015-01-01 00:00:00 to 2018-12-25 23:00:00
#Data columns (total 1 columns):
#value    34857 non-null int64
#dtypes: int64(1)
#memory usage: 544.6 KB
#None

Result  = df1.resample('60min')
print Result.head()

#                     value
#Date/Time                 
#2015-01-01 00:00:00     52
#2015-01-01 01:00:00      5
#2015-01-01 02:00:00     12
#2015-01-01 03:00:00     54
#2015-01-01 04:00:00     47
print Result.info()

#<class 'pandas.core.frame.DataFrame'>
#DatetimeIndex: 34920 entries, 2015-01-01 00:00:00 to 2018-12-25 23:00:00
#Freq: 60T
#Data columns (total 1 columns):
#value    34857 non-null float64
#dtypes: float64(1)
#memory usage: 545.6 KB
#None

#find values with NaN
resultnan =  Result[Result.isnull().any(axis=1)]
#temporaly display 999 rows and 15 columns
with pd.option_context('display.max_rows', 999, 'display.max_columns', 15):
    print resultnan

#                     value
#Date/Time                 
#2015-01-13 19:00:00    NaN
#2015-01-13 20:00:00    NaN
#2015-01-13 21:00:00    NaN
#2015-01-13 22:00:00    NaN
#2015-01-13 23:00:00    NaN
#2015-01-14 00:00:00    NaN
#2015-01-14 01:00:00    NaN
#2015-01-14 02:00:00    NaN
#2015-01-14 03:00:00    NaN
#2015-01-14 04:00:00    NaN
#2015-01-14 05:00:00    NaN
#2015-01-14 06:00:00    NaN
#2015-01-14 07:00:00    NaN
#2015-01-14 08:00:00    NaN
#2015-01-14 09:00:00    NaN
#2015-02-01 00:00:00    NaN
#2015-02-01 01:00:00    NaN
#2015-02-01 02:00:00    NaN
#2015-02-01 03:00:00    NaN
#2015-02-01 04:00:00    NaN
#2015-02-01 05:00:00    NaN
#2015-02-01 06:00:00    NaN
#2015-02-01 07:00:00    NaN
#2015-02-01 08:00:00    NaN
#2015-02-01 09:00:00    NaN
#2015-02-01 10:00:00    NaN
#2015-02-01 11:00:00    NaN
#2015-02-01 12:00:00    NaN
#2015-02-01 13:00:00    NaN
#2015-02-01 14:00:00    NaN
#2015-02-01 15:00:00    NaN
#2015-02-01 16:00:00    NaN
#2015-02-01 17:00:00    NaN
#2015-02-01 18:00:00    NaN
#2015-02-01 19:00:00    NaN
#2015-02-01 20:00:00    NaN
#2015-02-01 21:00:00    NaN
#2015-02-01 22:00:00    NaN
#2015-02-01 23:00:00    NaN
#2015-11-01 00:00:00    NaN
#2015-11-01 01:00:00    NaN
#2015-11-01 02:00:00    NaN
#2015-11-01 03:00:00    NaN
#2015-11-01 04:00:00    NaN
#2015-11-01 05:00:00    NaN
#2015-11-01 06:00:00    NaN
#2015-11-01 07:00:00    NaN
#2015-11-01 08:00:00    NaN
#2015-11-01 09:00:00    NaN
#2015-11-01 10:00:00    NaN
#2015-11-01 11:00:00    NaN
#2015-11-01 12:00:00    NaN
#2015-11-01 13:00:00    NaN
#2015-11-01 14:00:00    NaN
#2015-11-01 15:00:00    NaN
#2015-11-01 16:00:00    NaN
#2015-11-01 17:00:00    NaN
#2015-11-01 18:00:00    NaN
#2015-11-01 19:00:00    NaN
#2015-11-01 20:00:00    NaN
#2015-11-01 21:00:00    NaN
#2015-11-01 22:00:00    NaN
#2015-11-01 23:00:00    NaN
于 2015-11-27T11:38:45.177 に答える