h2oのメモリサイズよりも大きなデータをロードして実験しています。
H2oブログの言及:A note on Bigger Data and GC: We do a user-mode swap-to-disk when the Java heap gets too full, i.e., you’re using more Big Data than physical DRAM. We won’t die with a GC death-spiral, but we will degrade to out-of-core speeds. We’ll go as fast as the disk will allow. I’ve personally tested loading a 12Gb dataset into a 2Gb (32bit) JVM; it took about 5 minutes to load the data, and another 5 minutes to run a Logistic Regression.
R
接続するコードは次のh2o 3.6.0.8
とおりです。
h2o.init(max_mem_size = '60m') # alloting 60mb for h2o, R is running on 8GB RAM machine
与える
java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)
.Successfully connected to http://127.0.0.1:54321/
R is connected to the H2O cluster:
H2O cluster uptime: 2 seconds 561 milliseconds
H2O cluster version: 3.6.0.8
H2O cluster name: H2O_started_from_R_RILITS-HWLTP_tkn816
H2O cluster total nodes: 1
H2O cluster total memory: 0.06 GB
H2O cluster total cores: 4
H2O cluster allowed cores: 2
H2O cluster healthy: TRUE
Note: As started, H2O is limited to the CRAN default of 2 CPUs.
Shut down and restart H2O as shown below to use all your CPUs.
> h2o.shutdown()
> h2o.init(nthreads = -1)
IP Address: 127.0.0.1
Port : 54321
Session ID: _sid_b2e0af0f0c62cd64a8fcdee65b244d75
Key Count : 3
169 MB の csv を h2o に読み込もうとしました。
dat.hex <- h2o.importFile('dat.csv')
エラーをスローした、
Error in .h2o.__checkConnectionHealth() :
H2O connection has been severed. Cannot connect to instance at http://127.0.0.1:54321/
Failed to connect to 127.0.0.1 port 54321: Connection refused
これは、メモリ不足エラーを示しています。
質問: H2o がそのメモリ容量よりも大きなデータ セットをロードすることを約束している場合 (上記のブログの引用にあるように、ディスクへのスワップ メカニズム)、これはデータをロードする正しい方法ですか?