Rstudio 内からhttp://learn.h2o.ai/content/tutorials/ensembles-stacking/index.htmlにあるH2OEnsemble で例を実行しようとすると、次のエラーが発生します。
値 [3L] のエラー: 引数「training_frame」は有効な H2O H2OFrame または ID でなければなりません
アンサンブルを定義した後
fit <- h2o.ensemble(x = x, y = y,
training_frame = train,
family = family,
learner = learner,
metalearner = metalearner,
cvControl = list(V = 5, shuffle = TRUE))
h2o
両方の最新バージョンをインストールしましたh2oEnsemble
が、問題は残ります。ここで、「h2o.cbind」が H2OFrame オブジェクトのみを受け入れることを読みました-Rの命名規則はh2o
時間の経過とともに変更されましたが、両方の最新バージョンをインストールすることで、これはもはや問題ではないと思います。
助言がありますか?
library(readr)
library(h2oEnsemble) # Requires version >=0.0.4 of h2oEnsemble
library(cvAUC) # Used to calculate test set AUC (requires version >=1.0.1 of cvAUC)
localH2O <- h2o.init(nthreads = -1) # Start an H2O cluster with nthreads = num cores on your machine
# Import a sample binary outcome train/test set into R
train <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_10k.csv")
test <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_test_5k.csv")
y <- "C1"
x <- setdiff(names(train), y)
family <- "binomial"
#For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
# Specify the base learner library & the metalearner
learner <- c("h2o.glm.wrapper", "h2o.randomForest.wrapper",
"h2o.gbm.wrapper", "h2o.deeplearning.wrapper")
metalearner <- "h2o.deeplearning.wrapper"
# Train the ensemble using 5-fold CV to generate level-one data
# More CV folds will take longer to train, but should increase performance
fit <- h2o.ensemble(x = x, y = y,
training_frame = train,
family = family,
learner = learner,
metalearner = metalearner,
cvControl = list(V = 5, shuffle = TRUE))