1

(アプリケーション atm のコンテキスト内でのみ) Ubuntu 15.04 および OS X で scikit 0.17 を使用GridSearchCVすると、次の問題を再現LogisticRegressionできます。

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/pipeline.py in fit(self=Pipeline(steps=[('cpencoder', <cpml.whitebox.Lin...s', refit=True, scoring=u'roc_auc', verbose=1))]), X=                   Unnamed: 0  member_id  loan_a...          42.993346  

[152536 rows x 45 columns], y=array([0, 1, 0, ..., 1, 1, 0]), **fit_params={})
    160         y : iterable, default=None
    161             Training targets. Must fulfill label requirements for all steps of
    162             the pipeline.
    163         """
    164         Xt, fit_params = self._pre_transform(X, y, **fit_params)
--> 165         self.steps[-1][-1].fit(Xt, y, **fit_params)
        self.steps.fit = undefined
        Xt = array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]])
        y = array([0, 1, 0, ..., 1, 1, 0])
        fit_params = {}
    166         return self
    167 
    168     def fit_transform(self, X, y=None, **fit_params):
    169         """Fit all the transforms one after the other and transform the

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/grid_search.py in fit(self=GridSearchCV(cv=None, error_score='raise',
     ...jobs', refit=True, scoring=u'roc_auc', verbose=1), X=array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]]), y=array([0, 1, 0, ..., 1, 1, 0]))
    799         y : array-like, shape = [n_samples] or [n_samples, n_output], optional
    800             Target relative to X for classification or regression;
    801             None for unsupervised learning.
    802 
    803         """
--> 804         return self._fit(X, y, ParameterGrid(self.param_grid))
        self._fit = <bound method GridSearchCV._fit of GridSearchCV(...obs', refit=True, scoring=u'roc_auc', verbose=1)>
        X = array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]])
        y = array([0, 1, 0, ..., 1, 1, 0])
        self.param_grid = {'C': [1], 'class_weight': ['auto'], 'fit_intercept': [False], 'intercept_scaling': [1], 'penalty': ['l2']}
    805 
    806 
    807 class RandomizedSearchCV(BaseSearchCV):
    808     """Randomized search on hyper parameters.

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/grid_search.py in _fit(self=GridSearchCV(cv=None, error_score='raise',
     ...jobs', refit=True, scoring=u'roc_auc', verbose=1), X=array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]]), y=array([0, 1, 0, ..., 1, 1, 0]), parameter_iterable=<sklearn.grid_search.ParameterGrid object>)
    548         )(
    549             delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_,
    550                                     train, test, self.verbose, parameters,
    551                                     self.fit_params, return_parameters=True,
    552                                     error_score=self.error_score)
--> 553                 for parameters in parameter_iterable
        parameters = undefined
        parameter_iterable = <sklearn.grid_search.ParameterGrid object>
    554                 for train, test in cv)
    555 
    556         # Out is a list of triplet: score, estimator, n_test_samples
    557         n_fits = len(out)

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py in __call__(self=Parallel(n_jobs=2), iterable=<generator object <genexpr>>)
    807             if pre_dispatch == "all" or n_jobs == 1:
    808                 # The iterable was consumed all at once by the above for loop.
    809                 # No need to wait for async callbacks to trigger to
    810                 # consumption.
    811                 self._iterating = False
--> 812             self.retrieve()
        self.retrieve = <bound method Parallel.retrieve of Parallel(n_jobs=2)>
    813             # Make sure that we get a last message telling us we are done
    814             elapsed_time = time.time() - self._start_time
    815             self._print('Done %3i out of %3i | elapsed: %s finished',
    816                         (len(self._output), len(self._output),

---------------------------------------------------------------------------
Sub-process traceback:
---------------------------------------------------------------------------
ValueError                                         Mon Jan 18 11:58:09 2016
PID: 71840 Python 2.7.10: /Users/samuelhopkins/.virtualenvs/cpml/bin/python
...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self=<sklearn.externals.joblib.parallel.BatchedCalls object>)
     67     def __init__(self, iterator_slice):
     68         self.items = list(iterator_slice)
     69         self._size = len(self.items)
     70 
     71     def __call__(self):
---> 72         return [func(*args, **kwargs) for func, args, kwargs in self.items]
     73 
     74     def __len__(self):
     75         return self._size
     76 

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/cross_validation.pyc in _fit_and_score(estimator=LogisticRegression(C=1, class_weight='auto', dua...         tol=0.0001, verbose=0, warm_start=False), X=memmap([[  0.00000000e+00,   1.29659900e+06,   5...000000e+00,   0.00000000e+00,   4.29933458e+01]]), y=memmap([0, 1, 0, ..., 1, 1, 0]), scorer=make_scorer(roc_auc_score, needs_threshold=True), train=array([ 49100,  49101,  49102, ..., 152533, 152534, 152535]), test=array([    0,     1,     2, ..., 57517, 57522, 57532]), verbose=1, parameters={'C': 1, 'class_weight': 'auto', 'fit_intercept': False, 'intercept_scaling': 1, 'penalty': 'l2'}, fit_params={}, return_train_score=False, return_parameters=True, error_score='raise')
   1545                              " numeric value. (Hint: if using 'raise', please"
   1546                              " make sure that it has been spelled correctly.)"
   1547                              )
   1548 
   1549     else:
-> 1550         test_score = _score(estimator, X_test, y_test, scorer)
   1551         if return_train_score:
   1552             train_score = _score(estimator, X_train, y_train, scorer)
   1553 
   1554     scoring_time = time.time() - start_time

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/cross_validation.pyc in _score(estimator=LogisticRegression(C=1, class_weight='auto', dua...         tol=0.0001, verbose=0, warm_start=False), X_test=memmap([[  0.00000000e+00,   1.29659900e+06,   5...000000e+01,   0.00000000e+00,   4.29933458e+01]]), y_test=memmap([0, 1, 0, ..., 1, 1, 1]), scorer=make_scorer(roc_auc_score, needs_threshold=True))
   1604         score = scorer(estimator, X_test)
   1605     else:
   1606         score = scorer(estimator, X_test, y_test)
   1607     if not isinstance(score, numbers.Number):
   1608         raise ValueError("scoring must return a number, got %s (%s) instead."
-> 1609                          % (str(score), type(score)))
   1610     return score
   1611 
   1612 
   1613 def _permutation_test_score(estimator, X, y, cv, scorer):

ValueError: scoring must return a number, got 0.998981811748 (<class 'numpy.core.memmap.memmap'>) instead.

アプリケーションのコンテキスト外で再現しようと何度か試みましたが、うまくいきません。次の変更をcross_validation.py行い、特定の問題を修正しました。

...

if isinstance(score, np.core.memmap):
   score = np.float(score)
if not isinstance(score, numbers.Number):
    raise ValueError("scoring must return a number, got %s (%s) instead."

...

いくつかの詳細情報:

  • 私たちはpython 2.7を使用しています
  • Pipelineすべての入力が数値であることを確認するためにa を使用しています

私の質問は次のとおりです。

  • scorerがを返すようにするには、この問題をどのように再現すればよいでしょうmemmapか?
  • 他の誰かがこの特定の問題を抱えていますか?
  • 私たちが行った変更は、cross_validation.py実際に適切なソリューションですか?
4

1 に答える 1

1

はい、似たようなケースがありました

.memmap私はメモリ割り当ての O/S 制限のために -sに恋をし、 -s やその他の方法.memmapでそれらを使用して、大規模な機械学習のためのスマートなツールであると考えています。(大規模なs グリッドでのメモリの事前割り当ての悪影響のため、まだそうではありません).fit()sklearnGridSearchCV()HyperPARAMETERn_jobs = -1


どうすれば...再現...できるでしょうか?私が覚えている限りでは、私の場合も同様で、「通常」から「アーティファクト」への変更numpy.ndarraynumpy.memmap()これらのアーティファクトの始まりでした。したがって、そのような人為的なものを作成しようとする場合は、データを.memmap()配列の -ed 表現にラップし、単純な数値ではなく、データの単一セルが含まれている場合でも、それが返されるようにします。.memmap()そのセルのジェネリック配列表現の -ed サブ範囲へのビューを受け取ります。


変更は...まともな解決策ですか?結果のコンポーネント.memmap()を参照してセル値を明示的に返すことで、-ed ラッパーを取り除きました。[0]による強制変換.float()は問題ないようです。

于 2016-01-26T18:28:26.887 に答える