Julia で Matlab fmincon 最適化関数を書き直そうとしています。
Matlab コードは次のとおりです。
function [x,fval] = example3()
x0 = [0; 0; 0; 0; 0; 0; 0; 0];
A = [];
b = [];
Ae = [1000 1000 1000 1000 -1000 -1000 -1000 -1000];
be = [100];
lb = [0; 0; 0; 0; 0; 0; 0; 0];
ub = [1; 1; 1; 1; 1; 1; 1; 1];
noncon = [];
options = optimset('fmincon');
options.Algorithm = 'interior-point';
[x,fval] = fmincon(@objfcn,x0,A,b,Ae,be,lb,ub,@noncon,options);
end
function f = objfcn(x)
% user inputs
Cr = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
w0 = [ 0.3; 0.3; 0.2; 0.1 ];
Er = [0.05; 0.1; 0.12; 0.18];
% calculate objective function
w = w0+x(1:4)-x(5:8);
Er_p = w'*Er;
Sr_p = sqrt(w'*Cr*w);
% f = objective function
f = -Er_p/Sr_p;
end
ここに私のジュリアコードがあります:
using JuMP
using Ipopt
m = Model(solver=IpoptSolver())
# INPUT DATA
w0 = [ 0.3; 0.3; 0.2; 0.1 ]
Er = [0.05; 0.1; 0.12; 0.18]
Cr = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ]
# VARIABLES
@defVar(m, 0 <= x[i=1:8] <= 1, start = 0.0)
@defNLExpr(w, w0+x[1:4]-x[5:8])
@defNLExpr(Er_p, w'*Er)
@defNLExpr(Sr_p, w'*Cr*w)
@defNLExpr(f, Er_p/Sr_p)
# OBJECTIVE
@setNLObjective(m, Min, f)
# CONSTRAINTS
@addConstraint(m, 1000*x[1] + 1000*x[2] + 1000*x[3] + 1000*x[4] -
1000*x[5] - 1000*x[6] - 1000*x[7] - 1000*x[8] == 100)
# SOLVE
status = solve(m)
# DISPLAY RESULTS
println("x = ", round(getValue(x),4))
println("f = ", round(getObjectiveValue(m),4))
Julia の最適化は、@setNLObjective で目的関数を明示的に定義すると機能しますが、ユーザーの入力が変化して別の目的関数が生成される可能性があるため、これは不適切です。これは、目的関数の作成方法から確認できます。
この問題は、目的関数を @setNLObjective 引数に入力する方法に関する JuMP の制限のようです。
すべての式は単純なスカラー演算でなければなりません。ドット、行列ベクトル積、ベクトル スライスなどは使用できません。ベクトル演算を明示的な sum{} 演算に変換してください。
これを回避する方法はありますか?または、これを解決する Julia の他のパッケージはありますか?
どうもありがとう。