OpenCV 機能検出を使用して、LIDAR の結果と仮想マップの比較に基づいてロボットの位置を推定しています。orb 機能検出に続いて flannbasedmatcher を使用してみましたが、一致結果が間違っていました。ここに私のコードの一部があります
Ptr<ORB> orb_a = ORB::create();
Ptr<ORB> orb_b = ORB::create();
vector <cv::KeyPoint> kp1,kp2;
Mat desc1,desc2;
/* set orb :
1. ORB name
2. nfeatures
3. Nlevels
4. EdgeThreshold
5. First Level
6. WTA
7. Score Type
8. Patchsize
9. Scale Factor */
Mat hmap,hlidar;
setORB(orb_a,500,8,100,0,4,ORB::HARRIS_SCORE,31,1.1); //map
orb_a->detectAndCompute(lidarmap,noArray(),kp1,desc1);
drawKeypoints(lidarmap,kp1,hmap,Scalar::all(-1),DrawMatchesFlags::DEFAULT);
setORB(orb_b,50,8,30,0,4,ORB::HARRIS_SCORE,10,1.5); //lidar
orb_b->detectAndCompute(lidarused,noArray(),kp2,desc2);
drawKeypoints(lidarused,kp2,hlidar,Scalar::all(-1),DrawMatchesFlags::DEFAULT);
//flann
FlannBasedMatcher matcher;
std::vector<DMatch>matches;
matcher.match (desc1,desc2,matches);
double maxdist = 0, mindist = 100000;
for (int i = 0; i< desc1.rows; i++)
{
double dist = matches[i].distance;
if (dist<mindist) mindist = dist;
if (dist>maxdist) maxdist = dist;
}
if (mindist<0.02) mindist = 0.02;
printf ("min : %7.3f \t max : %7.3f \n",mindist,maxdist);
vector <DMatch> good_matches;
for (int i=1; i<desc1.rows; i++)
{
if (matches[i].distance >= 2*mindist && matches[i].distance<maxdist/2)
{
good_matches.push_back (matches[i]);
}
}
Mat imgmatches;
drawMatches (lidarmap,kp1,
lidarused,kp2,
good_matches,imgmatches,
Scalar::all(-1), Scalar::all(-1),
vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
これが結果です。 検出は大丈夫そうですが、2番目の画像を回転させるとひどいです
フランマッチャーは、スケーリングも回転もされていない画像でのみ機能しますか? フランを使用してバイカラー イメージ (BW) を一致させることはできますか? または、誰かが私が間違っているところを指摘できますか? 前もって感謝します