EVP インターフェイスを使用して CMAC を機能させることができました。先ほど失敗した鍵生成部分も動作。これがコードです。ご覧のとおり、ここに投稿された例を取り上げました: OpenSSL を使用して AES CMAC を計算する方法は? これは、OpenSSL の CMAC_Init/Update/Final インターフェイスを使用し、EVP インターフェイスが CMAC で機能するかどうかを確認するためにさまざまな NIST 値を試しました。コード スニペットは次のとおりです。キー生成も機能するようになりました。私が見落としているものがあれば教えてください。EVPを使用している間、私は発言があります。下記の備考欄も併せてご覧ください。
/*
* CMACSiging.c
*/
#include <stdio.h>
#include <openssl/cmac.h>
#include <openssl/err.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/evp.h>
#include <string.h>
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
void printBytes(unsigned char *buf, size_t len) {
int i;
for(i=0; i<len; i++) {
printf("%02x", buf[i]);
}
printf("\n");
}
EVP_PKEY *generate_key(int type)
{
EVP_PKEY_CTX *pctx = NULL, *kctx = NULL;
EVP_PKEY *params = NULL, *key = NULL;
unsigned char k[] = {0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4};
/* Create context for the key generation */
if(!(kctx = EVP_PKEY_CTX_new_id(type, NULL))) goto err;
/* Generate the key */
if(!EVP_PKEY_keygen_init(kctx)) goto err;
if(type == EVP_PKEY_CMAC)
{
if (EVP_PKEY_CTX_ctrl(kctx, -1, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_CIPHER,
0, (void *)EVP_aes_256_cbc()) <= 0)
goto err;
if (EVP_PKEY_CTX_ctrl(kctx, -1, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_SET_MAC_KEY, sizeof(k), k) <= 0)
goto err;
}
if (!EVP_PKEY_keygen(kctx, &key)) goto err;
goto end;
err:
end:
if(pctx) EVP_PKEY_CTX_free(pctx);
if(params) EVP_PKEY_free(params);
if(kctx) EVP_PKEY_CTX_free(kctx);
return key;
}
void trial(uint8_t *msg, uint8_t mlen, uint8_t *key, uint8_t keylen, uint8_t **sig, uint8_t *slen)
{
//16 byte msg with 32 byte key with aes 256 cbc based CMAC
if(!msg || !mlen || !key) {
//handleError
}
if(*sig)
OPENSSL_free(*sig);
*sig = NULL;
*slen = 0;
EVP_MD_CTX* ctx = NULL;
EVP_PKEY *pkey = NULL;
const EVP_MD* md = NULL;
OpenSSL_add_all_digests();
do
{
ctx = EVP_MD_CTX_create();
if(ctx == NULL) {
printf("EVP_MD_CTX_create failed\n");
break; // failed
}
if(!(md = EVP_get_digestbyname("SHA256")))
printf("EVP_get_digestbyname failed\n");
printf("Over to EVP calls \n");
if(!(pkey = generate_key(EVP_PKEY_CMAC))) printf("Error 5 \n");
int rc ;
rc = EVP_DigestSignInit(ctx, NULL, md, NULL, pkey);
if(rc != 1) {
printf("EVP_DigestSignInit failed\n");
ERR_print_errors_fp(stdout);
break;
}
rc = EVP_DigestSignUpdate(ctx, msg, mlen);
if(rc != 1) {
printf("EVP_DigestSignUpdate failed\n");
ERR_print_errors_fp(stdout);
break;
}
size_t req = 0;
rc = EVP_DigestSignFinal(ctx, NULL, &req);
if(rc != 1) {
printf("EVP_DigestSignFinal failed\n");
ERR_print_errors_fp(stdout);
break;
}
if(!(req > 0)) {
printf("EVP_DigestSignFinal failed (2)\n");
break;
}
*sig = OPENSSL_malloc(req);
if(*sig == NULL) {
printf("OPENSSL_malloc failed, error \n");
break;
}
*slen = req;
rc = EVP_DigestSignFinal(ctx, *sig, slen);
if(rc != 1) {
printf("EVP_DigestSignFinal failed (3)\n");
ERR_print_errors_fp(stdout);
break;
}
} while(0);
if(ctx) {
EVP_MD_CTX_destroy(ctx);
ctx = NULL;
}
}
int main(int argc, char *argv[])
{
// https://tools.ietf.org/html/rfc4493
// K, M and T from
// http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf
// D.1 AES-128
// K: 2b7e1516 28aed2a6 abf71588 09cf4f3c
unsigned char key[] = {0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4};
// M: 6bc1bee2 2e409f96 e93d7e11 7393172a Mlen: 128
unsigned char message[] = { 0x6b,0xc1,0xbe,0xe2,
0x2e,0x40,0x9f,0x96,
0xe9,0x3d,0x7e,0x11,
0x73,0x93,0x17,0x2a };
unsigned char mact[16] = {0};
size_t mactlen;
CMAC_CTX *ctx = CMAC_CTX_new();
CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL);
printf("message length = %lu bytes (%lu bits)\n",sizeof(message), sizeof(message)*8);
CMAC_Update(ctx, message, sizeof(message));
CMAC_Final(ctx, mact, &mactlen);
printBytes(mact, mactlen);
//expected result T = 070a16b4 6b4d4144 f79bdd9d d04a287c
CMAC_CTX_free(ctx);
uint8_t key_len = sizeof(key);
uint8_t mlen = sizeof(message);
uint8_t *dgst = NULL;
size_t dlen;
trial( message, mlen, key, key_len, &dgst, &dlen);
printf("length of sig = %d\n", dlen);
printf("CMAC returned from trial is: ");
int i;
for(i = 0; i < dlen; i++)
printf("%02x", dgst[i]);
printf("\n");
return 0;
}
述べる:
コードに見られるように、重要なことは、EVP_DigestSignInit を使用する場合、メッセージ ダイジェスト エンベロープ構造 (EVP_MD) を OpenSSL Wiki で述べられているように NULL と見なすべきではないことに注意することです (私がテストした場所である OpenSSL 1.0.2e の ATLEAST):
注: 非対称アルゴリズムを使用した署名と MAC コードの生成の API に違いはありません。CMAC の場合、メッセージ ダイジェスト関数は必要ありません (NULL を渡すことができます)。EVP_Sign* 関数を使用した署名は、MAC コードがサポートされていないことを除いて、上記の例と非常によく似ています。CMAC は OpenSSL の (まだリリースされていない) バージョン 1.1.0 でのみサポートされていることに注意してください。
NULL を渡すと、ダイジェストが NULL であるというエラーが発生します。この構造体は基本的に無視されるため、渡されたものは CMAC 生成に影響を与えないようです。ここにいる OpenSSL 担当者が明確にしてくれることを願っています。ありがとう!!