2

簡単なサンプル スクリプトを使用して、4 GPU の Amazon インスタンスでこの問題に遭遇しています。

import skflow
import tensorflow as tf
from sklearn import datasets

iris = datasets.load_iris()
X_train, X_test, y_train, y_test = cross_validation.train_test_split(iris.data, iris.target,
    test_size=0.2, random_state=42)

def my_model(X, y):

    with tf.device('/gpu:1'):
        layers = skflow.ops.dnn(X, [1000, 500, 150], keep_prob=0.5) # many neurons to see the impac on memory
    with tf.device('/cpu:0'):
        return skflow.models.logistic_regression(layers, y)

classifier = skflow.TensorFlowEstimator(model_fn=my_model, n_classes=3)
classifier.fit(X_train, y_train)

nvidia-smiスクリプトを起動する前の結果は次のとおりです。

Fri Feb 19 11:30:22 2016       
+------------------------------------------------------+                       
| NVIDIA-SMI 346.46     Driver Version: 346.46         |                       
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GRID K520           Off  | 0000:00:03.0     Off |                  N/A |
| N/A   40C    P0    41W / 125W |   2247MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GRID K520           Off  | 0000:00:04.0     Off |                  N/A |
| N/A   36C    P0    40W / 125W |   2113MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GRID K520           Off  | 0000:00:05.0     Off |                  N/A |
| N/A   41C    P0    43W / 125W |     53MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  GRID K520           Off  | 0000:00:06.0     Off |                  N/A |
| N/A   39C    P0    41W / 125W |   1816MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

スクリプトの実行中:

Fri Feb 19 11:30:53 2016       
+------------------------------------------------------+                       
| NVIDIA-SMI 346.46     Driver Version: 346.46         |                       
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GRID K520           Off  | 0000:00:03.0     Off |                  N/A |
| N/A   40C    P0    46W / 125W |   3926MiB /  4095MiB |     26%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GRID K520           Off  | 0000:00:04.0     Off |                  N/A |
| N/A   37C    P0    42W / 125W |   3926MiB /  4095MiB |     17%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GRID K520           Off  | 0000:00:05.0     Off |                  N/A |
| N/A   41C    P0    44W / 125W |     92MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  GRID K520           Off  | 0000:00:06.0     Off |                  N/A |
| N/A   39C    P0    42W / 125W |   1856MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

そのため、コードのどの部分にも言及されていませんが、メモリは GPU0 に割り当てられます。この振る舞いがどこから来るか知っていますか?このインスタンスには複数のユーザーがいて、誰も使用しない場合でも GPU0 が飽和状態になるため、これにより問題が発生します。

4

2 に答える 2

1

私たちが見つけた回避策は、変更することですskflow.TensorFlowEstimator

犯人は

with self._graph.as_default():
    tf.set_random_seed(self.tf_random_seed)
    self._global_step = tf.Variable(
        0, name="global_step", trainable=False)

skflow.TensorFlowEstimator.setup_training()、これを次のように変更しました

with self._graph.as_default(), tf.device("/gpu:{0}".format(self.gpu_number)):
    tf.set_random_seed(self.tf_random_seed)
    self._global_step = tf.get_variable('global_step', [],
                                      initializer=tf.constant_initializer(0), trainable=False)

gpu_numberクラスに属性を追加し、inで初期化sessionするallow_soft_placement=Trueskflow.TensorFlowEstimator._setup_training()

于 2016-02-19T14:14:28.450 に答える