以下は理想的ではありませんが、開始する必要があります。最初にnltk
テキストを単語に分割し、次にすべての単語の語幹を含むセットを生成して、ストップ ワードをフィルタリングします。これは、サンプル テキストとサンプル クエリの両方に対して行われます。
2 つのセットの共通部分にクエリ内のすべての単語が含まれている場合、一致したと見なされます。
import nltk
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
ps = PorterStemmer()
def get_word_set(text):
return set(ps.stem(word) for word in word_tokenize(text) if word not in stop_words)
text1 = "The arterial high blood pressure may engage the prognosis for survival of the patient as a result of complications. TENSTATEN enters within the framework of a preventive treatment(processing). His(Her,Its) report(relationship) efficiency / effects unwanted is important. diuretics, medicine of first intention of which TENSTATEN, is. The therapeutic alternatives are very numerous."
text2 = "The arterial high blood pressure may engage the for survival of the patient as a result of complications. TENSTATEN enters within the framework of a preventive treatment(processing). His(Her,Its) report(relationship) efficiency / effects unwanted is important. diuretics, medicine of first intention of which TENSTATEN, is. The therapeutic alternatives are very numerous."
query = "engage the prognosis for survival"
set_query = get_word_set(query)
for text in [text1, text2]:
set_text = get_word_set(text)
intersection = set_query & set_text
print "Query:", set_query
print "Test:", set_text
print "Intersection:", intersection
print "Match:", len(intersection) == len(set_query)
print
スクリプトは 2 つのテキストを提供します。1 つはパスし、もう 1 つはパスしません。実行内容を示す次の出力が生成されます。
Query: set([u'prognosi', u'engag', u'surviv'])
Test: set([u'medicin', u'prevent', u'effici', u'engag', u'Her', u'process', u'within', u'surviv', u'high', u'pressur', u'result', u'framework', u'diuret', u')', u'(', u',', u'/', u'.', u'numer', u'Hi', u'treatment', u'import', u'complic', u'altern', u'patient', u'relationship', u'may', u'arteri', u'effect', u'prognosi', u'intent', u'blood', u'report', u'The', u'TENSTATEN', u'unwant', u'It', u'therapeut', u'enter', u'first'])
Intersection: set([u'prognosi', u'engag', u'surviv'])
Match: True
Query: set([u'prognosi', u'engag', u'surviv'])
Test: set([u'medicin', u'prevent', u'effici', u'engag', u'Her', u'process', u'within', u'surviv', u'high', u'pressur', u'result', u'diuret', u')', u'(', u',', u'/', u'.', u'numer', u'Hi', u'treatment', u'import', u'complic', u'altern', u'patient', u'relationship', u'may', u'arteri', u'effect', u'framework', u'intent', u'blood', u'report', u'The', u'TENSTATEN', u'unwant', u'It', u'therapeut', u'enter', u'first'])
Intersection: set([u'engag', u'surviv'])
Match: False