私はKerasを初めて使用し、データセットでバイナリMLPを実行しようとしていますが、理由がわからないままインデックスを範囲外に取得し続けています。
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
model = Sequential()
model.add(Dense(64, input_dim=20, init='uniform', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop')
model.fit(trainx, trainy, nb_epoch=20, batch_size=16) # THROWS INDICES ERROR
エラー:
model.fit(trainx, trainy, nb_epoch=20, batch_size=16)
Epoch 1/20
Traceback (most recent call last):
File "<ipython-input-6-c81bd7606eb0>", line 1, in <module>
model.fit(trainx, trainy, nb_epoch=20, batch_size=16)
File "C:\Users\Thiru\Anaconda3\lib\site-packages\keras\models.py", line 646, in fit
shuffle=shuffle, metrics=metrics)
File "C:\Users\Thiru\Anaconda3\lib\site-packages\keras\models.py", line 271, in _fit
ins_batch = slice_X(ins, batch_ids)
File "C:\Users\Thiru\Anaconda3\lib\site-packages\keras\models.py", line 65, in slice_X
return [x[start] for x in X]
File "C:\Users\Thiru\Anaconda3\lib\site-packages\keras\models.py", line 65, in <listcomp>
return [x[start] for x in X]
File "C:\Users\Thiru\Anaconda3\lib\site-packages\pandas\core\frame.py", line 1963, in __getitem__
return self._getitem_array(key)
File "C:\Users\Thiru\Anaconda3\lib\site-packages\pandas\core\frame.py", line 2008, in _getitem_array
return self.take(indexer, axis=1, convert=True)
File "C:\Users\Thiru\Anaconda3\lib\site-packages\pandas\core\generic.py", line 1371, in take
convert=True, verify=True)
File "C:\Users\Thiru\Anaconda3\lib\site-packages\pandas\core\internals.py", line 3619, in take
indexer = maybe_convert_indices(indexer, n)
File "C:\Users\Thiru\Anaconda3\lib\site-packages\pandas\core\indexing.py", line 1750, in maybe_convert_indices
raise IndexError("indices are out-of-bounds")
IndexError: indices are out-of-bounds
なぜこれが起こっているのか誰にも分かりますか?他のモデルを問題なく実行できます