77

25 列 23 行の数値と、長さ 25 のベクトルがあります。ループmatrixを使用せずに行列の各行をベクトルで乗算するにはどうすればよいですか?for

結果は 25x23 の行列 (入力と同じサイズ) になるはずですが、各行はベクトルで乗算されています。

@hatmatrix の回答から再現可能な例を追加しました。

matrix <- matrix(rep(1:3,each=5),nrow=3,ncol=5,byrow=TRUE)

     [,1] [,2] [,3] [,4] [,5]
[1,]    1    1    1    1    1
[2,]    2    2    2    2    2
[3,]    3    3    3    3    3

vector <- 1:5

望ましい出力:

     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    2    4    6    8   10
[3,]    3    6    9   12   15
4

6 に答える 6

90

私はあなたが探していると思いますsweep()

# Create example data and vector
mat <- matrix(rep(1:3,each=5),nrow=3,ncol=5,byrow=TRUE)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    1    1    1    1
[2,]    2    2    2    2    2
[3,]    3    3    3    3    3

vec <- 1:5

# Use sweep to apply the vector with the multiply (`*`) function
#  across columns (See ?apply for an explanation of MARGIN) 
sweep(mat, MARGIN=2, vec, `*`)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    2    4    6    8   10
[3,]    3    6    9   12   15

これはRのコア機能の1つですが、長年にわたって改善されてきました。

于 2010-09-06T09:52:54.230 に答える
42
> MyMatrix <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE)
> MyMatrix
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]   11   12   13
> MyVector <- c(1:3)
> MyVector
[1] 1 2 3

次のいずれかを使用できます。

> t(t(MyMatrix) * MyVector)
     [,1] [,2] [,3]
[1,]    1    4    9
[2,]   11   24   39

また:

> MyMatrix %*% diag(MyVector)
     [,1] [,2] [,3]
[1,]    1    4    9
[2,]   11   24   39
于 2010-09-04T19:06:58.923 に答える
28

実際、sweep私のコンピューターでは最速のオプションではありません。

MyMatrix <- matrix(c(1:1e6), ncol=1e4, byrow=TRUE)
MyVector <- c(1:1e4)

Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option
Rprof()
MyTimerTranspose=summaryRprof(tmp)$sampling.time
unlink(tmp)

Rprof(tmp <- tempfile(),interval = 0.001)
MyMatrix %*% diag(MyVector) # second option
Rprof()
MyTimerDiag=summaryRprof(tmp)$sampling.time
unlink(tmp)

Rprof(tmp <- tempfile(),interval = 0.001)
sweep(MyMatrix ,MARGIN=2,MyVector,`*`)  # third option
Rprof()
MyTimerSweep=summaryRprof(tmp)$sampling.time
unlink(tmp)

Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option again, to check order 
Rprof()
MyTimerTransposeAgain=summaryRprof(tmp)$sampling.time
unlink(tmp)

MyTimerTranspose
MyTimerDiag
MyTimerSweep
MyTimerTransposeAgain

これにより、次の結果が得られます。

> MyTimerTranspose
[1] 0.04
> MyTimerDiag
[1] 40.722
> MyTimerSweep
[1] 33.774
> MyTimerTransposeAgain
[1] 0.043

最も遅いオプションであることに加えて、2 番目のオプションはメモリ制限 (2046 MB) に達します。ただし、残りのオプションを考慮すると、二重転置sweepは私の意見よりもはるかに優れているようです。


編集

小さなデータを何度も試すだけです:

MyMatrix <- matrix(c(1:1e3), ncol=1e1, byrow=TRUE)
MyVector <- c(1:1e1)
n=100000

[...]

for(i in 1:n){
# your option
}

[...]

> MyTimerTranspose
[1] 5.383
> MyTimerDiag
[1] 6.404
> MyTimerSweep
[1] 12.843
> MyTimerTransposeAgain
[1] 5.428
于 2010-09-21T19:46:29.353 に答える