2

これは私のコードです:

def _parse(self, text):
    """
    This is the core interaction with the parser.

    It returns a Python data-structure, while the parse()
    function returns a JSON object
    """

    # CoreNLP interactive shell cannot recognize newline
    if '\n' in text or '\r' in text:
        to_send = re.sub("[\r\n]", " ", text).strip()
    else:
        to_send = text


    self.corenlp.sendline(to_send)
    max_expected_time = max(300.0, len(to_send) / 3.0)

    # repeated_input = self.corenlp.except("\n")  # confirm it
    t = self.corenlp.expect(["\nNLP> ", pexpect.TIMEOUT, pexpect.EOF,
                                 "\nWARNING: Parsing of sentence failed, possibly because of out of memory."],
                                timeout=max_expected_time)
    incoming = self.corenlp.before
    lag = incoming.split(b"\r\n")
    incoming = b"\r\n".join(lag).decode('latin-1').encode('utf-8')
    if t == 1:
        # TIMEOUT, clean up anything left in buffer
        print >>sys.stderr, {'error': "timed out after %f seconds" % max_expected_time,
                                 'input': to_send,
                                 'output': incoming}
        raise TimeoutError("Timed out after %d seconds" % max_expected_time)
    elif t == 2:
                # EOF, probably crash CoreNLP process
        print >>sys.stderr, {'error': "CoreNLP terminates abnormally while parsing",
                                 'input': to_send,
                                 'output': incoming}
        raise ProcessError("CoreNLP process terminates abnormally while parsing")
    elif t == 3:
                # out of memory
        print >>sys.stderr, {'error': "WARNING: Parsing of sentence failed, possibly because of out of memory.",
                                 'input': to_send,
                                 'output': incoming}
        raise OutOfMemoryError

    if VERBOSE:
        print("%s\n%s" % ('=' * 40, incoming))
    try:
        results = parse_parser_results(incoming)
    except ixception as e:
        if VERBOSE:
            print(traceback.format_exc())
        raise e

    self.pre_loaded_analisys_dict[to_send] = results

    with open(self.pre_analysis,"w", encoding = 'utf-8') as f:
        json.dump(self.pre_loaded_analisys_dict,f)

    return results

そして、このエラーが発生しました(多くの用語を解析していますが、そのエラーが発生したのは初めてです):

>>: 'builtin_function_or_method' および '_io.TextIOWrapper' のオペランド タイプがサポートされていません

何か案は?

編集:printint着信変数私はこれを持っています:

b'Q\r\n注釈パイプラインのタイミング情報:\r\nTokenizerAnnotator: 0.0 秒\r\nWordsToSentencesAnnotator: 0.0 秒\r\nPOSTaggerAnnotator: 0.0 秒\r\nMorphaAnnotator: 0.1 秒\r\nNERCombinerAnnotator: 0.4 秒.\r\n合計: 0.6 秒。606.1 トークン/秒で 337 トークン。\r\nパイプラインのセットアップ: 0.0 秒\r\nStanfordCoreNLP パイプラインの合計時間: 138.7 秒\r\n'

次のようなものを取得する必要がある場合:

b'Contusion of Knee\r\nSentence #1 (3 tokens):\r\nContusion of Knee\r\n[Text=Contusion CharacterOffsetBegin=0 CharacterOffsetEnd=9 PartOfSpeech=NN Lemma=contusion NamedEntityTag=O] [Text=of CharacterOffsetBegin=10 CharacterOffsetEnd=12 PartOfSpeech=IN Lemma=of NamedEntityTag=O] [Text=knee CharacterOffsetBegin=13 CharacterOffsetEnd=17 PartOfSpeech=NN Lemma=knee NamedEntityTag=O] \r'

4

1 に答える 1