5

Flink には 2 種類のメッセージがあります

  1. 制御メッセージ -> ファイルをロールするのみ
  2. データメッセージ -> シンクを使用して S3 に保存されます

両方のメッセージに別々のソース ストリームがあり、両方のストリームに同じシンクをアタッチしています。やりたいことは、並行して実行されているすべてのシンクがそれを受信できるように、制御メッセージをブロードキャストすることです。

以下は同じコードです。

package com.ranjit.com.flinkdemo;

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.fs.DateTimeBucketer;
import org.apache.flink.streaming.connectors.fs.RollingSink;

import org.apache.flink.streaming.connectors.fs.StringWriter;;

public class FlinkBroadcast {
    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);

        DataStream<String> ctrl_message_stream = env.socketTextStream("localhost", 8088);

        ctrl_message_stream.broadcast();

        DataStream<String> message_stream = env.socketTextStream("localhost", 8087);

        RollingSink sink = new RollingSink<String>("/base/path");
        sink.setBucketer(new DateTimeBucketer("yyyy-MM-dd--HHmm"));
        sink.setWriter(new StringWriter<String>() );
        sink.setBatchSize(1024 * 1024 * 400); // this is 400 MB,

        ctrl_message_stream.broadcast().addSink(sink);
        message_stream.addSink(sink);

        env.execute("stream");
    }

}

しかし、私が観察したことは、シンクの 4 つのインスタンスを作成しており、制御メッセージが 2 つのシンク (制御メッセージ ストリームによって作成された) のみにブロードキャストされていることです。だから私が理解したのは、データメッセージに複数の変換があるため、これを行うには両方のストリームが同じオペレーターチェーンを介する必要があるということです。コントロールメッセージの場合はメッセージを読み取り、ファイルをロールするだけの独自のシンクを作成しました。

コード例:

package com.gslab.com.dataSets;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericData.Record;
import org.apache.avro.generic.GenericRecord;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkBroadcast {
    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);

        List<String> controlMessageList = new ArrayList<String>();
        controlMessageList.add("controlMessage1");
        controlMessageList.add("controlMessage2");

        List<String> dataMessageList = new ArrayList<String>();
        dataMessageList.add("Person1");
        dataMessageList.add("Person2");
        dataMessageList.add("Person3");
        dataMessageList.add("Person4");

        DataStream<String> controlMessageStream  = env.fromCollection(controlMessageList);
        DataStream<String> dataMessageStream  = env.fromCollection(dataMessageList);

        DataStream<GenericRecord> controlMessageGenericRecordStream = controlMessageStream.map(new MapFunction<String, GenericRecord>() {
            @Override
            public GenericRecord map(String value) throws Exception {
                 Record gr = new GenericData.Record(new Schema.Parser().parse(new File("src/main/resources/controlMessageSchema.avsc")));
                 gr.put("TYPE", value);
                 return gr;
            }
        });

        DataStream<GenericRecord> dataMessageGenericRecordStream = dataMessageStream.map(new MapFunction<String, GenericRecord>() {
            @Override
            public GenericRecord map(String value) throws Exception {
                 Record gr = new GenericData.Record(new Schema.Parser().parse(new File("src/main/resources/dataMessageSchema.avsc")));
                 gr.put("FIRSTNAME", value);
                 gr.put("LASTNAME", value+": lastname");
                 return gr;
            }
        });

        //Displaying Generic records
        dataMessageGenericRecordStream.map(new MapFunction<GenericRecord, GenericRecord>() {
            @Override
            public GenericRecord map(GenericRecord value) throws Exception {
                System.out.println("data before union: "+ value);
                return value;
            }
        });

        controlMessageGenericRecordStream.broadcast().union(dataMessageGenericRecordStream).map(new MapFunction<GenericRecord, GenericRecord>() {
            @Override
            public GenericRecord map(GenericRecord value) throws Exception {
                System.out.println("data after union: " + value);
                return value;
            }
        });
        env.execute("stream");
    }
}

出力:

05/09/2016 13:02:12 Source: Collection Source(1/1) switched to FINISHED 
05/09/2016 13:02:12 Source: Collection Source(1/1) switched to FINISHED 
05/09/2016 13:02:13 Map(1/2) switched to FINISHED 
05/09/2016 13:02:13 Map(2/2) switched to FINISHED 
data after union: {"TYPE": "controlMessage1"}
data before union: {"FIRSTNAME": "Person2", "LASTNAME": "Person2: lastname"}
data after union: {"TYPE": "controlMessage1"}
data before union: {"FIRSTNAME": "Person1", "LASTNAME": "Person1: lastname"}
data after union: {"TYPE": "controlMessage2"}
data after union: {"TYPE": "controlMessage2"}
data after union: {"FIRSTNAME": "Person1", "LASTNAME": "Person1"}
data before union: {"FIRSTNAME": "Person4", "LASTNAME": "Person4: lastname"}
data before union: {"FIRSTNAME": "Person3", "LASTNAME": "Person3: lastname"}
data after union: {"FIRSTNAME": "Person2", "LASTNAME": "Person2"}
data after union: {"FIRSTNAME": "Person3", "LASTNAME": "Person3"}
05/09/2016 13:02:13 Map -> Map(2/2) switched to FINISHED 
data after union: {"FIRSTNAME": "Person4", "LASTNAME": "Person4"}
05/09/2016 13:02:13 Map -> Map(1/2) switched to FINISHED 
05/09/2016 13:02:13 Map(1/2) switched to FINISHED 
05/09/2016 13:02:13 Map(2/2) switched to FINISHED 
05/09/2016 13:02:13 Job execution switched to status FINISHED.

LASTNAME 値が正しくないことがわかるように、各レコードの FIRSTNAME 値に置き換えられます

4

1 に答える 1