ES6 アロー関数構文を使用します。あなたは CoffeeScript を知っているようなので、問題なく読めるはずです。
これがYコンビネータです
var Y = F=> (x=> F (y=> x (x) (y))) (x=> F (y=> x (x) (y)))
私はあなたのfactorial
機能の改良版を使用するつもりです。これは代わりにアキュムレータを使用して、評価が大きなピラミッドに変わるのを防ぎます。この関数のプロセスは線形反復ですが、あなたのプロセスは再帰的です。ES6が最終的にテールコールを排除すると、これはさらに大きな違いになります.
構文の違いはわずかです。Y
がどのように評価されるかを確認したいだけなので、とにかく重要ではありません。
var factorial = Y (fact=> acc=> n=>
n < 2 ? acc : fact (acc*n) (n-1)
) (1);
これにより、すでにコンピューターは何らかの作業を開始します。それでは、先に進む前にこれを評価しましょう...
テキスト エディターに本当に優れたブラケット ハイライターがあることを願っています...
var factorial
= Y (f=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (1) // sub Y
= (F=> (x=> F (y=> x (x) (y))) (x=> F (y=> x (x) (y)))) (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (1) // apply F=> to fact=>
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (1) // apply x=> to x=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (1) // apply acc=> to 1
= n=> n < 2 ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*n) (n-1) // return value
= [Function] (n=> ...)
呼び出した後、ここで確認できます。
var factorial = Y(fact=> acc=> n=> ...) (1);
//=> [Function] (n=> ...)
単一の入力を待っている関数が返されますn
。階乗を実行してみましょう
先に進む前に、javascript repl にコピー/貼り付けすることで、ここにあるすべての行が正しいことを確認できます(確認する必要があります) 。各行が返されます (これが の正解です。ネタバレしてしまい申し訳ありません)。これは、分数を単純化したり、代数方程式を解いたり、化学式のバランスを取ったりするときと似ています。各ステップは正しい答えでなければなりません。24
factorial(4)
私のコメントについては、必ず右端までスクロールしてください。各行でどの操作を完了したかを説明します。完了した操作の結果は次の行にあります。
そして、そのブラケット蛍光ペンが再び手元にあることを確認してください...
factorial (4) // sub factorial
= (n=> n < 2 ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*n) (n-1)) (4) // apply n=> to 4
= 4 < 2 ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*4) (4-1) // 4 < 2
= false ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*4) (4-1) // ?:
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*4) (4-1) // 1*4
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4) (4-1) // 4-1
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4) (3) // apply y=> to 4
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (4) (3) // apply x=> to x=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4) (3) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (4) (3) // apply acc=> to 4
= (n=> n < 2 ? 4 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*n) (n-1)) (3) // apply n=> to 3
= 3 < 2 ? 4 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*3) (3-1) // 3 < 2
= false ? 4 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*3) (3-1) // ?:
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*3) (3-1) // 4*2
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12) (3-1) // 3-1
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12) (2) // apply y=> to 12
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (12) (2) // apply x=> to y=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12) (2) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (12) (2) // apply acc=> 12
= (n=> n < 2 ? 12 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*n) (n-1)) (2) // apply n=> 2
= 2 < 2 ? 12 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*2) (2-1) // 2 < 2
= false ? 12 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*2) (2-1) // ?:
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*2) (2-1) // 12*2
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24) (2-1) // 2-1
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24) (1) // apply y=> to 24
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (24) (1) // apply x=> to x=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24) (1) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (24) (1) // apply acc=> to 24
= (n=> n < 2 ? 24 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24*n) (n-1)) (1) // apply n=> to 1
= 1 < 2 ? 24 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24*1) (1-1) // 1 < 2
= true ? 24 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24*1) (1-1) // ?:
= 24
の他の実装も見てきましY
た。別のもの (javascript で使用するため) を最初から作成する簡単なプロセスを次に示します。
// text book
var Y = f=> f (Y (f))
// prevent immediate recursion (javascript is applicative order)
var Y = f=> f (x=> Y (f) (x))
// remove recursion using U combinator
var Y = U (h=> f=> f (x=> h (h) (f) (x)))
// given: U = f=> f (f)
var Y = (h=> f=> f (x=> h (h) (f) (x))) (h=> f=> f (x=> h (h) (f) (x)))