更新: [本当の質問を理解した後 ;-] 自転車の等価グループ ( set、bike_set ) を見つけることは、実際には関係分割の問題です。バイクのセット内のセグメント ( clust ) の開始と終了を見つけることは、基本的に最初の試行と同じです。
- クラスターは配列に格納されます: (クラスターが大きくなりすぎないことを信頼しています)
- 配列は再帰クエリによって構築されます。現在のクラスターと共通のメンバーを 1 つ持つ自転車のすべてのペアが、そのクラスターにマージされます。
- 最後に、配列には、特定の時間にたまたま手の届く範囲にあったすべての bike_id が含まれています。
- (さらに、後で
uniq
CTE によって抑制する必要があるいくつかの中間行)
- 残りは、時系列で多かれ少なかれ標準的なギャップ検出です。
注: コードは を信頼してい(bike2 > bike1)
ます。これは、配列をソートして正規化するために必要です。再帰クエリでの追加の順序を保証できないため、実際のコンテンツが正規のものであるとは限りません。これには追加の作業が必要になる場合があります。
CREATE TABLE nearness
( bike1 INTEGER NOT NULL
, bike2 INTEGER NOT NULL
, stamp timestamp NOT NULL
, near boolean
, PRIMARY KEY(bike1,bike2,stamp)
);
INSERT INTO nearness( bike1,bike2,stamp,near) VALUES
(1,2, '2016-05-28 11:00:00', TRUE)
,(1,2, '2016-05-28 11:00:05', TRUE)
,(1,2, '2016-05-28 11:00:10', TRUE)
,(1,2, '2016-05-28 11:00:20', TRUE) -- <<-- gap here
,(1,2, '2016-05-28 11:00:25', TRUE)
,(1,2, '2016-05-28 11:00:30', FALSE) -- <<-- these False-records serve no pupose
,(4,5, '2016-05-28 11:00:00', FALSE) -- <<-- result would be the same without them
,(4,5, '2016-05-28 11:00:05', FALSE)
,(4,5, '2016-05-28 11:00:10', TRUE)
,(4,5, '2016-05-28 11:00:15', TRUE)
,(4,5, '2016-05-28 11:00:20', TRUE)
,(2,3, '2016-05-28 11:00:05', TRUE) -- <<-- bike 1, 2, 3 are in one grp @ 11:00:05
,(2,3, '2016-05-28 11:00:10', TRUE) -- <<-- no group here
,(6,7, '2016-05-28 11:00:00', FALSE)
,(6,7, '2016-05-28 11:00:05', FALSE)
;
-- Recursive union-find to glue together sets of bike_ids
-- ,occuring at the same moment.
-- Sets are represented as {ordered,unique} arrays here
WITH RECURSIVE wood AS (
WITH omg AS (
SELECT bike1 ,bike2,stamp
, row_number() OVER(ORDER BY bike1,bike2,stamp) AS seq
, ARRAY[bike1,bike2]::integer[] AS arr
FROM nearness n WHERE near = True
)
-- Find all existing combinations of bikes
SELECT o1.stamp, o1.seq
, ARRAY[o1.bike1,o1.bike2]::integer[] AS arr
FROM omg o1
UNION ALL
SELECT o2.stamp, o2.seq -- avoid duplicates inside the array
, CASE when o2.bike1 = ANY(w.arr) THEN w.arr || o2.bike2
ELSE w.arr || o2.bike1 END AS arr
FROM omg o2
JOIN wood w
ON o2.stamp = w.stamp AND o2.seq > w.seq
AND (o2.bike1 = ANY(w.arr) OR o2.bike2 = ANY(w.arr))
AND NOT (o2.bike1 = ANY(w.arr) AND o2.bike2 = ANY(w.arr))
)
, uniq AS ( -- suppress partial sets caused by the recursive union-find buildup
SELECT * FROM wood w
WHERE NOT EXISTS (SELECT * FROM wood nx
WHERE nx.stamp = w.stamp
AND nx.arr @> w.arr AND nx.arr <> w.arr -- contains but not equal
)
)
, xsets AS ( -- make unique sets of bikes
SELECT DISTINCT arr
-- , MIN(seq) AS grp
FROM uniq
GROUP BY arr
)
, sets AS ( -- enumerate the sets of bikes
SELECT arr
, row_number() OVER () AS setnum
FROM xsets
)
, drag AS ( -- Detect beginning and end of segments of consecutive observations
SELECT u.* -- within a constant set of bike_ids
-- Edge-detection begin of group
, NOT EXISTS (SELECT * FROM uniq nx
WHERE nx.arr = u.arr
AND nx.stamp < u.stamp
AND nx.stamp >= u.stamp - '5 sec'::interval
) AS is_first
-- Edge-detection end of group
, NOT EXISTS (SELECT * FROM uniq nx
WHERE nx.arr = u.arr
AND nx.stamp > u.stamp
AND nx.stamp <= u.stamp + '5 sec'::interval
) AS is_last
, row_number() OVER(ORDER BY arr,stamp) AS nseq
FROM uniq u
)
, top AS ( -- id and groupnum for the start of a group
SELECT nseq
, row_number() OVER () AS clust
FROM drag
WHERE is_first
)
, bot AS ( -- id and groupnum for the end of a group
SELECT nseq
, row_number() OVER () AS clust
FROM drag
WHERE is_last
)
SELECT w.seq as orgseq -- results, please ...
, w.stamp
, g0.clust AS clust
, row_number() OVER(www) AS rn
, s.setnum, s.arr AS bike_set
FROM drag w
JOIN sets s ON s.arr = w.arr
JOIN top g0 ON g0.nseq <= w.seq
JOIN bot g1 ON g1.nseq >= w.seq AND g1.clust = g0.clust
WINDOW www AS (PARTITION BY g1.clust ORDER BY w.stamp)
ORDER BY g1.clust, w.stamp
;
結果:
orgseq | stamp | clust | rn | setnum | bike_set
--------+---------------------+-------+----+--------+----------
1 | 2016-05-28 11:00:00 | 1 | 1 | 1 | {1,2}
4 | 2016-05-28 11:00:20 | 3 | 1 | 1 | {1,2}
5 | 2016-05-28 11:00:25 | 3 | 2 | 1 | {1,2}
6 | 2016-05-28 11:00:05 | 4 | 1 | 3 | {1,2,3}
7 | 2016-05-28 11:00:10 | 4 | 2 | 3 | {1,2,3}
8 | 2016-05-28 11:00:10 | 4 | 3 | 2 | {4,5}
(6 rows)