1

私はこのコードを持っています:

"""Softmax."""

import math

scores = [3.0, 1.0, 0.2]

import numpy as np

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    pass  # TODO: Compute and return softmax(x)
    sum_denominator = 0
    powers = []
    for item in x:
        powers.append(math.e**item)
        sum_denominator = sum_denominator + powers[-1]
    for idx in range(len(x)):
        x[idx] = powers[idx]/sum_denominator
    return x


print(softmax(scores))

# Plot softmax curves
import matplotlib.pyplot as plt
x = np.arange(-2.0, 6.0, 0.1)
scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)])

plt.plot(x, softmax(scores).T, linewidth=2)
plt.show()

これはこれを生成します:

ここに画像の説明を入力

どうやってそのプロットを手に入れたのかわかりません。大きなスコアが大きな確率を与えるべきであることは理解していますが、プロットを取得できません。numpy.ones_likeもあまり役に立ちませんでしたね。:)


編集:

私は何を求めているのか不明な投票を得たので、私はこれを尋ねています. に[0.8360188027814407, 0.11314284146556014, 0.050838355752999165]適用されたソフトマックスの結果であるベクトルから、どのようにしscoresてそのプロットを得たのですか. つまり、その背後にあるロジックは何ですか?


スコア( の後vstack())は次のとおりです。

[[ -2.00000000e+00 -1.90000000e+00 -1.80000000e+00 -1.70000000e+00 -1.60000000e+00 -1.50000000e+00 -1.40000000e+00 -1.30000000e+00 -1.20000000e+00 -1.10000000e+00 -1.00000000e+00 -9.00000000e-01 -8.00000000e-01 -7.00000000e-01 -6.00000000e-01 -5.00000000e-01 -4.00000000e-01 -3.00000000e-01 -2.00000000e-01 -1.00000000e-01 1.77635684e-15 1.00000000e-01 2.00000000e-01 3.00000000e-01 4.00000000e-01 5.00000000e-01 6.00000000e-01 7.00000000e-01 8.00000000e-01 9.00000000e-01 1.00000000e+00 1.10000000e+00 1.20000000e+00 1.30000000e+00 1.40000000e+00 1.50000000e+00 1.60000000e+00 1.70000000e+00 1.80000000e+00 1.90000000e+00 2.00000000e+00 2.10000000e+00 2.20000000e+00 2.30000000e+00 2.40000000e+00 2.50000000e+00 2.60000000e+00 2.70000000e+00 2.80000000e+00 2.90000000e+00 3.00000000e+00 3.10000000e+00 3.20000000e+00 3.30000000e+00 3.40000000e+00 3.50000000e+00 3.60000000e+00 3.70000000e+00 3.80000000e+00 3.90000000e+00 4.00000000e+00 4.10000000e+00 4.20000000e+00 4.30000000e+00 4.40000000e+00 4.50000000e+00 4.60000000e+00 4.70000000e+00 4.80000000e+00 4.90000000e+00 5.00000000e+00 5.10000000e+00 5.20000000e+00 5.30000000e+00 5.40000000e+00 5.50000000e+00 5.60000000e+00 5.70000000e+00 5.80000000e+00 5.90000000e+00] [ 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00] [ 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01]]
4

1 に答える 1