を使用して PCA のさまざまな形状を取得していsklearn
ます。 ドキュメントが言うように、私の変換が同じ次元の配列にならないのはなぜですか?
fit_transform(X, y=None)
Fit the model with X and apply the dimensionality reduction on X.
Parameters:
X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples and n_features is the number of features.
Returns:
X_new : array-like, shape (n_samples, n_components)
(150, 4)
私が 4 台の PC を作成している iris データセットでこれを確認してください。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn import decomposition
import seaborn as sns; sns.set_style("whitegrid", {'axes.grid' : False})
%matplotlib inline
np.random.seed(0)
# Iris dataset
DF_data = pd.DataFrame(load_iris().data,
index = ["iris_%d" % i for i in range(load_iris().data.shape[0])],
columns = load_iris().feature_names)
Se_targets = pd.Series(load_iris().target,
index = ["iris_%d" % i for i in range(load_iris().data.shape[0])],
name = "Species")
# Scaling mean = 0, var = 1
DF_standard = pd.DataFrame(StandardScaler().fit_transform(DF_data),
index = DF_data.index,
columns = DF_data.columns)
# Sklearn for Principal Componenet Analysis
# Dims
m = DF_standard.shape[1]
K = m
# PCA (How I tend to set it up)
M_PCA = decomposition.PCA()
A_components = M_PCA.fit_transform(DF_standard)
#DF_standard.shape, A_components.shape
#((150, 4), (150, 4))
しかし、実際のデータセットで同じ正確なアプローチを使用すると、(76, 1989)
代わり76 samples
に配列1989 attributes/dimensions
が得られます(76, 76)
(76, 1989)
DF_centered = normalize(DF_mydata, method="center", axis=0)
m = DF_centered.shape[1]
# print(m)
# 1989
M_PCA = decomposition.PCA(n_components=m)
A_components = M_PCA.fit_transform(DF_centered)
DF_centered.shape, A_components.shape
# ((76, 1989), (76, 76))
normalize
mean
は、各次元からを減算する、私が作成した単なるラッパーです。