0

私のJavaプログラムでは、画像がプログラムに読み込まれ、離散ウェーブレット変換を使用して変換され、結果の係数が出力画像の画像データとして使用されます。

このプロセスは自然な画像でうまく機能します: http://imgur.com/Pk3kUs7

ただし、たとえばカートン画像を変換すると、近似サブバンド内の暗いエッジに白い斑点が表示されます: http://imgur.com/kLXyBvd

forwardDWT のコードは次のとおりです。

private int[][] transformPixels(int[][] pixels, int widthHeight) {
    double[][] temp_bank = new double[widthHeight][widthHeight];
    double a1 = -1.586134342;
    double a2 = -0.05298011854;
    double a3 = 0.8829110762;
    double a4 = 0.4435068522;

    // Scale coeff:
    double k1 = 0.81289306611596146; // 1/1.230174104914
    double k2 = 0.61508705245700002;// 1.230174104914/2
    for (int i = 0; i < 2; i++) {
        for (int col = 0; col < widthHeight; col++) {
            // Predict 1
            for (int row = 1; row < widthHeight - 1; row += 2) {
                pixels[row][col] += a1 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[widthHeight - 1][col] += 2 * a1 * pixels[widthHeight - 2][col];

            // Update 1
            for (int row = 2; row < widthHeight; row += 2) {
                pixels[row][col] += a2 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[0][col] += 2 * a2 * pixels[1][col];

            // Predict 2
            for (int row = 1; row < widthHeight - 1; row += 2) {
                pixels[row][col] += a3 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[widthHeight - 1][col] += 2 * a3 * pixels[widthHeight - 2][col];

            // Update 2
            for (int row = 2; row < widthHeight; row += 2) {
                pixels[row][col] += a4 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[0][col] += 2 * a4 * pixels[1][col];
        }

        for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                if (row % 2 == 0)
                    temp_bank[col][row / 2] = k1 * pixels[row][col];
                else
                    temp_bank[col][row / 2 + widthHeight / 2] = k2 * pixels[row][col];

            }
        }

        for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                pixels[row][col] = (int) temp_bank[row][col];
            }
        }
    }
    return pixels;
}

これは、JPEG2000 の DWT と同様に、リフティング スキームを使用して実装された CDF9/7 フィルターバンクを使用した DWT です。

このアルゴリズムには 2 つの制限があります。

  1. グレースケールデータのみ処理可能
  2. 画像の幅と高さは同じで、2^n の積でなければなりません (例: 256x256、512x512 など)。

グレー値が間違って計算される可能性があるため、画像をロードし、変換を開始し、RGB 値をグレースケールに変換し、RGB に戻すための別のコードを次に示します。

public BufferedImage openImage() throws InvalidWidthHeightException {
    try {
        int returnVal = fc.showOpenDialog(panel);
        if (returnVal == JFileChooser.APPROVE_OPTION) {
            File file = fc.getSelectedFile();
            BufferedImage temp = ImageIO.read(file);
            if (temp == null)
                return null;
            int checkInt = temp.getWidth();
            boolean check = (checkInt & (checkInt - 1)) == 0;
            if (checkInt != temp.getHeight() & !check)
                throw new InvalidWidthHeightException();
            int widthandHeight = temp.getWidth();
            image = new BufferedImage(widthandHeight, widthandHeight, BufferedImage.TYPE_BYTE_GRAY);
            Graphics g = image.getGraphics();
            g.drawImage(temp, 0, 0, null);
            g.dispose();

            return image;

        }
    } catch (IOException e) {
        System.out.println("Failed to load image!");
    }
    return null;

}

public void transform(int count) {
    int[][] pixels = getGrayValues(image);
    int transformedPixels[][];
    int width = pixels.length;
    transformedPixels = transformPixels(pixels, width);
    width/=2;

    for (int i = 1; i < count + 1; i++) {
        transformedPixels = transformPixels(transformedPixels, width);
        width/=2;
    }
    width = pixels.length;
    transformedImage = new BufferedImage(width, width, BufferedImage.TYPE_BYTE_GRAY);
    for (int x = 0; x < width; x++) {
        for (int y = 0; y < width; y++) {
            transformedImage.setRGB(x, y, tranformToRGB(transformedPixels[x][y]));
        }
    }

}

private int tranformToRGB(double d) {
    int value = (int) d;
    if (d < 0)
        d = 0;
    if (d > 255)
        d = 255;
    return 0xffffffff << 24 | value << 16 | value << 8 | value;
}

private int[][] getGrayValues(BufferedImage image2) {
    int[][] res = new int[image.getHeight()][image.getWidth()];
    int r, g, b;
    for (int i = 0; i < image.getWidth(); i++) {
        for (int j = 0; j < image.getHeight(); j++) {
            int value = image2.getRGB(i, j);
            r = (value >> 16) & 0xFF;
            g = (value >> 8) & 0xFF;
            b = (value & 0xFF);
            res[i][j] = (r + g + b) / 3;
        }
    }
    return res;
}

注:画像の幅と高さは同じであると予想されるため、高さにも幅を使用することがあります。

編集: @stuhlo で提案されているように、forwardDWT の近似サブバンドの値のチェックを追加しました。

for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                if (row % 2 == 0) {
                    double value = k1 * pixels[row][col];
                    if (value > 255)
                        value = 255;
                    if (value < 0)
                        value = 0;
                    temp_bank[col][row / 2] = value;
                } else {
                    temp_bank[col][row / 2 + widthHeight / 2] = k2 * pixels[row][col];
                }
            }
        }

残念ながら、水平方向の詳細のサブバンドが黒くなりました。

4

1 に答える 1

1

あなたの問題は、サブバンドのサンプルが元の画像のサンプルよりも多くのビットを保存する必要があるという事実によって引き起こされます。

サブバンドのサンプルを格納し、表示するためにそれらを 8 ビット値に正規化するために、より大きなデータ型を使用することをお勧めします。

于 2016-07-18T07:37:57.797 に答える