1

これらの位置 (x と y) での人口比率 (pop.prop) の画像を描画して、人口分布を明確に確認するにはどうすればよいでしょうか?

データを以下に示します。

pts.pr = pts.cent[pts.cent$PIDS==3, ]    
pop = rnorm(nrow(pts.pr), 0, 1)    
pop.prop = exp(pop)/sum(exp(pop))    
pts.pr.data = as.data.frame(cbind(pts.pr@coords, cbind(pop.prop)))

            x        y    pop.prop
3633 106.3077 38.90931 0.070022855    
3634 106.8077 38.90931 0.012173106    
3756 106.3077 38.40931 0.039693085    
3878 105.8077 37.90931 0.034190747    
3879 106.3077 37.90931 0.057981214    
3880 106.8077 37.90931 0.089484103    
3881 107.3077 37.90931 0.026018622    
3999 104.8077 37.40931 0.008762790    
4000 105.3077 37.40931 0.030027889    
4001 105.8077 37.40931 0.038175671    
4002 106.3077 37.40931 0.017137084    
4003 106.8077 37.40931 0.038560394    
4123 105.3077 36.90931 0.021653256    
4124 105.8077 36.90931 0.107731536    
4125 106.3077 36.90931 0.036780336    
4247 105.8077 36.40931 0.269878770    
4248 106.3077 36.40931 0.004316260    
4370 105.8077 35.90931 0.003061392    
4371 106.3077 35.90931 0.050781007    
4372 106.8077 35.90931 0.034190670    
4494 106.3077 35.40931 0.009379213

xは経度、yは緯度です。

4

1 に答える 1

1

3 つの潜在的な解決策/アプローチを見つけたと思います。

最初のデータ:

pop <- read.table(header=TRUE, 
text="
       x        y        prop
106.3077 38.90931 0.070022855    
106.8077 38.90931 0.012173106    
106.3077 38.40931 0.039693085    
105.8077 37.90931 0.034190747    
106.3077 37.90931 0.057981214    
106.8077 37.90931 0.089484103    
107.3077 37.90931 0.026018622    
104.8077 37.40931 0.008762790    
105.3077 37.40931 0.030027889    
105.8077 37.40931 0.038175671    
106.3077 37.40931 0.017137084    
106.8077 37.40931 0.038560394    
105.3077 36.90931 0.021653256    
105.8077 36.90931 0.107731536    
106.3077 36.90931 0.036780336    
105.8077 36.40931 0.269878770    
106.3077 36.40931 0.004316260    
105.8077 35.90931 0.003061392    
106.3077 35.90931 0.050781007    
106.8077 35.90931 0.034190670    
106.3077 35.40931 0.009379213")

最初のアプローチは、人口サイズを示すためにシンボル サイズの代わりにシンボルの色を使用することを除いて、上記のコメントで述べたものと似ています。

# I might be overcomplicating things a bit with this colour function

cfun <- function(x, bias=2) {
    x <- (x-min(x))/(max(x)-min(x))
    xcol <- colorRamp(c("lightyellow", "orange", "red"), bias=bias)(x)
    rgb(xcol, maxColorValue=255)
}

# It is possible to also add a colour key, but I didn't bother

plot(pop$x, pop$y, col=cfun(pop$prop), cex=4, pch=20,
    xlab="Lon.", ylab="Lat.", main="Population Distribution")

ここに画像の説明を入力

2 番目のアプローチは、経度緯度値形式を通常のラスターに変換することに依存しており、これをヒート マップとして表すことができます。

library(raster)
e <- extent(pop[,1:2])

# this simple method of finding the correct number of rows and
# columns by counting the number of unique coordinate values in each
# dimension works in this case because there are no 'islands'
# (or if you wish, just one big 'island'), and the points are already
# regularly spaced.

nun <- function(x) { length(unique(x))}

r <- raster(e, ncol=nun(pop$x), nrow=nun(pop$y))

x <- rasterize(pop[, 1:2], r, pop[,3], fun=sum)
as.matrix(x)

cpal <- colorRampPalette(c("lightyellow", "orange", "red"), bias=2)

plot(x, col=cpal(200),
    xlab="Lon.", ylab="Lat.", main="Population Distribution")

ここに画像の説明を入力

ここから持ち上げる:補間なしで不規則な点データから RASTER を作成する方法

また、チェックアウトする価値があります: 「事前にグリッド化された」ポイントからサーフェスを作成します。(reshape2の代わりに使用raster)

3 番目のアプローチは、補間に依存して塗りつぶされた輪郭を描画します。

library(akima)

# interpolation
pop.int <- interp(pop$x, pop$y,  pop$prop)

filled.contour(pop.int$x, pop.int$y, pop.int$z,
    color.palette=cpal,
    xlab="Longitude", ylab="Latitude",
    main="Population Distribution",
    key.title = title(main="Proportion", cex.main=0.8))

ここに画像の説明を入力

ここからつかむ:不規則なグリッドに等高線をプロットする

于 2016-07-29T16:05:44.130 に答える