tflearn モデルのハイパーパラメータに対してグリッド検索を実行するつもりです。によって生成されたモデルtflearn.DNN
は、sklearn の GridSearchCV の期待と互換性がないようです:
from sklearn.grid_search import GridSearchCV
import tflearn
import tflearn.datasets.mnist as mnist
import numpy as np
X, Y, testX, testY = mnist.load_data(one_hot=True)
encoder = tflearn.input_data(shape=[None, 784])
encoder = tflearn.fully_connected(encoder, 256)
encoder = tflearn.fully_connected(encoder, 64)
# Building the decoder
decoder = tflearn.fully_connected(encoder, 256)
decoder = tflearn.fully_connected(decoder, 784)
# Regression, with mean square error
net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.01,
loss='mean_square', metric=None)
model = tflearn.DNN(net, tensorboard_verbose=0)
grid_hyperparams = {'optimizer': ['adam', 'sgd', 'rmsprop'], 'learning_rate': np.logspace(-4, -1, 4)}
grid = GridSearchCV(model, param_grid=grid_hyperparams, scoring='mean_squared_error', cv=2)
grid.fit(X, X)
エラーが発生します:
TypeError Traceback (most recent call last)
<ipython-input-3-fd63245cd0a3> in <module>()
22 grid_hyperparams = {'optimizer': ['adam', 'sgd', 'rmsprop'], 'learning_rate': np.logspace(-4, -1, 4)}
23 grid = GridSearchCV(model, param_grid=grid_hyperparams, scoring='mean_squared_error', cv=2)
---> 24 grid.fit(X, X)
25
26
/home/deeplearning/anaconda3/lib/python3.5/site-packages/sklearn/grid_search.py in fit(self, X, y)
802
803 """
--> 804 return self._fit(X, y, ParameterGrid(self.param_grid))
805
806
/home/deeplearning/anaconda3/lib/python3.5/site-packages/sklearn/grid_search.py in _fit(self, X, y, parameter_iterable)
539 n_candidates * len(cv)))
540
--> 541 base_estimator = clone(self.estimator)
542
543 pre_dispatch = self.pre_dispatch
/home/deeplearning/anaconda3/lib/python3.5/site-packages/sklearn/base.py in clone(estimator, safe)
45 "it does not seem to be a scikit-learn estimator "
46 "as it does not implement a 'get_params' methods."
---> 47 % (repr(estimator), type(estimator)))
48 klass = estimator.__class__
49 new_object_params = estimator.get_params(deep=False)
TypeError: Cannot clone object '<tflearn.models.dnn.DNN object at 0x7fead09948d0>' (type <class 'tflearn.models.dnn.DNN'>): it does not seem to be a scikit-learn estimator as it does not implement a 'get_params' methods.
GridSearchCV に適したオブジェクトを取得する方法を教えてください。