モデル入力 (x) として 2 次元配列がある TensorFlow の例では、MNIST データの代わりに独自のデータを交換しました。
[[379 1]
[412 2]
...
[205 1]
[504 8]]
および 1d 出力 (y)、つまり:
[20,
24,
...
19,
27]
次のコードは[0.5, 0.5]
、すべてのトレーニング ステップに対して 2 次元配列を生成し、テスト データに対する精度 (テスト データがランダムに生成される場合) に対して 1 を生成します。さらに、重みとバイアスはすべてゼロです。
for i in range(10):
print 'iterator:'
print i
batch_ys = np.reshape(training_outputs, (300, 1))
## batch_xs.shape = (300, 2)
batch_xs = training_inputs
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
print 'softmax value'
## !! these are a all [ 0.5 0.5] !!
print(sess.run(y, feed_dict={x: batch_xs}))
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
test_outputs = np.random.rand(300, 1)
## the following prints 1
print(sess.run(accuracy, feed_dict={x: test_inputs, y_: test_outputs}))
私は根本的に何かが欠けていますか?