0

softmax、 への入力y = tf.nn.softmax(tf.matmul(x, W) + b)は値付き行列です

tf.matmul(x, W) + b =
[[  9.77206726e+02]
 [  5.72391296e+02]
 [  3.53560760e+02]
 [  4.75727379e-01]
 [  6.58911804e+02]]

しかし、これを に入力するsoftmaxと、次のようになります。

tf.nn.softmax(tf.matmul(x, W) + b) =
[[ 1.]
 [ 1.]
 [ 1.]
 [ 1.]
 [ 1.]]

トレーニングの出力が1s の配列になるため、トレーニング データの各バッチで重みWやバイアスがb更新されません。これにより、私の精度1はテストデータのランダムなセットになります

以下は私のコードです:

x = tf.placeholder(tf.float32, [None, 2])

W = tf.Variable(tf.random_normal([2, 1]))

b = tf.Variable(tf.random_normal([1]))

y = tf.nn.softmax(tf.matmul(x, W) + b)

## placeholder for cross-entropy
y_ = tf.placeholder(tf.float32, [None, 1])

## cross-entropy function
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

## backpropagation & gradienct descent
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

## initialize variables
init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

ITER_RANGE = 10
EVAL_BATCH_SIZE = ( len(training_outputs)/ITER_RANGE )
training_outputs = np.reshape(training_outputs, (300, 1))
## training
for i in range(ITER_RANGE):
  print 'iterator:'
  print i

  ## batch out training data
  BEGIN = ( i*EVAL_BATCH_SIZE )
  END = ( (i*EVAL_BATCH_SIZE) + EVAL_BATCH_SIZE )

  batch_ys = training_outputs[BEGIN:END]
  batch_xs = training_inputs[BEGIN:END]

  print 'batch_xs'
  print batch_xs

  print 'batch_ys'
  print batch_ys

  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

  # y = tf.nn.softmax(tf.matmul(x, W) + b)
  print 'y'
  print (sess.run(y, feed_dict={x: batch_xs, y_: batch_ys}))

  #print 'x'
  #print sess.run(x)

  print 'W'
  print sess.run(W)

  print 'b'
  print sess.run(b)

  print 'tf.matmul(x, W) + b'
  print sess.run(tf.matmul(x, W) + b, feed_dict={x: batch_xs, y_: batch_ys})

  print 'tf.nn.softmaxtf.matmul(x, W) + b)'
  print sess.run((tf.nn.softmax(tf.matmul(x, W) + b)), feed_dict={x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

test_outputs = np.random.rand(300, 1)

## the following prints 1
print(sess.run(accuracy, feed_dict={x: test_inputs, y_: test_outputs}))
4

4 に答える 4

0

Softmaxの定義により、「任意の実数値の K 次元ベクトルを、合計が 1 になる範囲 (0, 1) の実数値の K 次元ベクトルに「押しつぶす

出力値が 1 つしかない場合、Softmax が出力するカテゴリカル確率分布は、合計が11 になる値とは対照的に、ちょうど です。

于 2016-09-08T02:07:49.357 に答える