2D でのロボットのローカリゼーションに関するコードを書いていますが、移動ロジックに行き詰まっています。ケースが [1,0,0,1....] の場合の動きは理解できますが、動きが [[1,0],[0,1].... の場合の実装方法がわかりません。 ...]
#SENSE AND MOVE (a measurment and a movement)
from math import log
p = [0.2, 0.2, 0.2, 0.2, 0.2] # Initial cell probability
w = ['R', 'G', 'G', 'R','R']# World
w = ['R','R', 'G','R','R']# World
w = ['R','R', 'G', 'G', 'R']# World
w = ['R','R','R','R','R']# World
meas = ['G','G','G','G','G'] # measurements
mov = [[0,0],[0,1],[1,0],[1,0],[0,1]] # motion
phit = .6 # Probability to measure: R->0.6
pmiss = .2 # Probability to measure: R->0.2
pExact = .8 # Prob. exact motion
pOver = .1 # Prob. overshoot
pUnder = .1 # Prob. undershoot
def entropy (p):
s = [p[i]*log(p[i]) for i in range(len(p))]
return round(-sum(s), 2)
def sense(p, z):
q = []
for i in range(len(p)):
hit = w[i]==z
q.append( p[i]*(phit*hit + pmiss*(1-hit)) )
s = sum(q)
q = [i/s for i in q]
return q
#Moving u cells
def move(p, u):
q = []
for i in range(len(p)):
motion = pExact * p[(i-u)%len(p)]
motion += pOver * p[(i-u-1)%len(p)]
motion += pUnder * p[(i-u+1)%len(p)]
q.append(motion)
return q
for i in range(len(meas)):
p = sense(p, meas[i])
r = [format(j,'.3f') for j in p]
print "Sense %i:"%(i),
print r, entropy(p)
p = move(p, mov[i])
r = [format(j,'.3f') for j in p]
print "Move %i:"%(i),
print r, entropy(p)
print