スリムの復元方法を試すことができます — slim.assign_from_checkpoint
.
スリム ソースに関連ドキュメントがあります:
https://github.com/tensorflow/tensorflow/blob/129665119ea60640f7ed921f36db9b5c23455224/tensorflow/contrib/slim/python/slim/learning.py
対応部分:
*************************************************
* Fine-Tuning Part of a model from a checkpoint *
*************************************************
Rather than initializing all of the weights of a given model, we sometimes
only want to restore some of the weights from a checkpoint. To do this, one
need only filter those variables to initialize as follows:
...
# Create the train_op
train_op = slim.learning.create_train_op(total_loss, optimizer)
checkpoint_path = '/path/to/old_model_checkpoint'
# Specify the variables to restore via a list of inclusion or exclusion
# patterns:
variables_to_restore = slim.get_variables_to_restore(
include=["conv"], exclude=["fc8", "fc9])
# or
variables_to_restore = slim.get_variables_to_restore(exclude=["conv"])
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
checkpoint_path, variables_to_restore)
# Create an initial assignment function.
def InitAssignFn(sess):
sess.run(init_assign_op, init_feed_dict)
# Run training.
slim.learning.train(train_op, my_log_dir, init_fn=InitAssignFn)
アップデート
私は次のことを試しました:
import tensorflow as tf
import tensorflow.contrib.slim as slim
import tensorflow.contrib.slim.nets as nets
images = tf.placeholder(tf.float32, [None, 224, 224, 3])
predictions = nets.vgg.vgg_16(images)
print [v.name for v in slim.get_variables_to_restore(exclude=['fc8']) ]
そして、この出力を得ました(短縮):
[u'vgg_16/conv1/conv1_1/weights:0',
u'vgg_16/conv1/conv1_1/biases:0',
…
u'vgg_16/fc6/weights:0',
u'vgg_16/fc6/biases:0',
u'vgg_16/fc7/weights:0',
u'vgg_16/fc7/biases:0',
u'vgg_16/fc8/weights:0',
u'vgg_16/fc8/biases:0']
したがって、スコープにプレフィックスを付ける必要があるようですvgg_16
:
print [v.name for v in slim.get_variables_to_restore(exclude=['vgg_16/fc8']) ]
与えます(短縮):
[u'vgg_16/conv1/conv1_1/weights:0',
u'vgg_16/conv1/conv1_1/biases:0',
…
u'vgg_16/fc6/weights:0',
u'vgg_16/fc6/biases:0',
u'vgg_16/fc7/weights:0',
u'vgg_16/fc7/biases:0']
更新 2
エラーなしで実行される完全な例 (私のシステムで)。
import tensorflow as tf
import tensorflow.contrib.slim as slim
import tensorflow.contrib.slim.nets as nets
s = tf.Session(config=tf.ConfigProto(gpu_options={'allow_growth':True}))
images = tf.placeholder(tf.float32, [None, 224, 224, 3])
predictions = nets.vgg.vgg_16(images, 200)
variables_to_restore = slim.get_variables_to_restore(exclude=['vgg_16/fc8'])
init_assign_op, init_feed_dict = slim.assign_from_checkpoint('./vgg16.ckpt', variables_to_restore)
s.run(init_assign_op, init_feed_dict)
上記の例は、 1000 クラスの VGG16 モデルでvgg16.ckpt
保存されたチェックポイントです。tf.train.Saver
200 クラス モデル ( fc8 を含む)のすべての変数でこのチェックポイントを使用すると、次のエラーが発生します。
init_assign_op, init_feed_dict = slim.assign_from_checkpoint('./vgg16.ckpt', slim.get_variables_to_restore())
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
1 init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
----> 2 './vgg16.ckpt', slim.get_variables_to_restore())
/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/framework/python/ops/variables.pyc in assign_from_checkpoint(model_path, var_list)
527 assign_ops.append(var.assign(placeholder_value))
528
--> 529 feed_dict[placeholder_value] = var_value.reshape(var.get_shape())
530
531 assign_op = control_flow_ops.group(*assign_ops)
ValueError: total size of new array must be unchanged