5

私のワークステーションには 3 つのグラフィックス カードがあり、そのうちの 1 つは Quadro K620 で、残りの 2 つは Titan X です。グラフィック カードの 1 つで tensorflow コードを実行して、他のカードを別のカードのためにアイドル状態にしておくことができるようにしたいと考えています。仕事。

ただし、設定tf.device('/gpu:0')やに関係なくtf.device('/gpu:1')、1 番目の Titan X グラフィックス カードが常に動作していることがわかりました。理由はわかりません。

import argparse
import os
import time
import tensorflow as tf
import numpy as np
import cv2

from Dataset import Dataset
from Net import Net

FLAGS = None

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--foldername', type=str, default='./data-large/')
    parser.add_argument('--batch_size', type=int, default=100)
    parser.add_argument('--num_epoches', type=int, default=100)
    parser.add_argument('--learning_rate', type=float, default=0.5)

    FLAGS = parser.parse_args()
    net = Net(FLAGS.batch_size, FLAGS.learning_rate)

    with tf.Graph().as_default():
        # Dataset is a class for encapsulate the input pipeline
        dataset = Dataset(foldername=FLAGS.foldername,
                              batch_size=FLAGS.batch_size,
                              num_epoches=FLAGS.num_epoches)

        images, labels = dataset.samples_train

        ## The following code defines the network and train
        with tf.device('/gpu:0'): # <==== THIS LINE
            logits = net.inference(images)
            loss = net.loss(logits, labels)
            train_op = net.training(loss)

            init_op = tf.group(tf.initialize_all_variables(), tf.initialize_local_variables())
            sess = tf.Session()
            sess.run(init_op)
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)
            start_time = time.time()
            try:
                step = 0
                while not coord.should_stop():
                    _, loss_value = sess.run([train_op, loss])
                    step = step + 1
                    if step % 100 == 0:
                        format_str = ('step %d, loss = %.2f, time: %.2f seconds')
                        print(format_str % (step, loss_value, (time.time() - start_time)))
                        start_time = time.time()
            except tf.errors.OutOfRangeError:
                print('done')
            finally:
                coord.request_stop()

            coord.join(threads)
            sess.close()

<=== THIS LINE「 : 」の行について

を設定tf.device('/gpu:0')すると、モニターには次のように表示されます。

|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Quadro K620         Off  | 0000:03:00.0      On |                  N/A |
| 34%   45C    P0     2W /  30W |    404MiB /  1993MiB |      5%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX TIT...  Off  | 0000:04:00.0     Off |                  N/A |
| 22%   39C    P2   100W / 250W |  11691MiB / 12206MiB |      8%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GeForce GTX TIT...  Off  | 0000:81:00.0     Off |                  N/A |
| 22%   43C    P2    71W / 250W |    111MiB / 12206MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

最初の Titan X カードが機能していることを示しています。

を設定tf.device('/gpu:1')すると、モニターには次のように表示されます。

|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Quadro K620         Off  | 0000:03:00.0      On |                  N/A |
| 34%   45C    P0     2W /  30W |    411MiB /  1993MiB |      3%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX TIT...  Off  | 0000:04:00.0     Off |                  N/A |
| 22%   52C    P2    73W / 250W |  11628MiB / 12206MiB |     12%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GeForce GTX TIT...  Off  | 0000:81:00.0     Off |                  N/A |
| 22%   42C    P2    71W / 250W |  11628MiB / 12206MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

2 枚目の Titan X だけではなく、2 枚の Titan X カードが機能していることを示しています。

この背後にある理由と、プログラムを実行する gpu を指定する方法はありますか?

4

1 に答える 1