DeepLearning4j を使用して既存の Caffe モデルを実装する必要があります。ただし、DL4J は初めてなので、実装方法がわかりません。ドキュメントと例を検索してもほとんど役に立ちませんでした。これら 2 つの用語は大きく異なります。以下の caffe prototxt を dl4j でどのように記述しますか?
レイヤー1:
layers {
name: "myLayer1"
type: CONVOLUTION
bottom: "data"
top: "myLayer1"
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 20
kernel_w: 2
kernel_h: 2
stride_w: 1
stride_h: 1
weight_filler {
type: "msra"
variance_norm: AVERAGE
}
bias_filler {
type: "constant"
}
}
}
レイヤ 2
layers {
name: "myLayer1Relu"
type: RELU
relu_param {
negative_slope: 0.3
}
bottom: "myLayer1"
top: "myLayer1"
}
レイヤ 3
layers {
name: "myLayer1_dropout"
type: DROPOUT
bottom: "myLayer1"
top: "myLayer1"
dropout_param {
dropout_ratio: 0.2
}
}
レイヤ 4
layers {
name: "final_class"
type: INNER_PRODUCT
bottom: "myLayer4"
top: "final_class"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
variance_norm: AVERAGE
}
bias_filler {
type: "constant"
value: 0
}
}
}