Visualizing a Decision Tree - Machine Learning import numpy as np from sklearn.datasets import load_iris from sklearn import tree から以下のコードを取得しました
iris = load_iris()
test_idx = [0, 50 , 100]
train_target = np.delete(iris.target, test_idx)
train_data = np.delete(iris.data, test_idx , axis=0)
test_target = iris.target[test_idx]
test_data = iris.data[test_idx]
clf = tree.DecisionTreeClassifier()
clf.fit(train_data, train_target)
print(test_target)
print(clf.predict(test_data))
#viz_code
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
tree.export_graphviz(clf,
out_file=dot_data,
feature_names = iris.feature_names,
class_names = iris.target_names,
filled = True, rounded = True,
impurity = False)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")
Python 3.5 で実行しようとしましたが、グラフがリストであるというエラーが表示されます。
Traceback (most recent call last):
File "Iris.py", line 31, in <module>
graph.write_pdf("iris.pdf")
AttributeError: 'list' object has no attribute 'write_pdf'
Press any key to continue . . .
graph
なぜここにリストがあるのですか?