1

コードに理由が見つからないバグがあります。これが私のjupyterノートブックのコピーです:

# coding: utf-8

# In[1]:

import tensorflow as tf
import tflearn
import numpy as np 
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.utils import shuffle

get_ipython().magic(u'matplotlib inline')


# # Data import and processing:

# In[13]:

# Import dataframe
path60  = './6060DataFrame.pkl'
df60 = pd.read_pickle(path60)
# Separate pandas dataframe into classification and data arrays
classData = df60["Classification"].as_matrix()
coilData = df60["Coil Data"].as_matrix()

# Cut coil data to every 40th point
coilDataCut = np.zeros((16000, 750), dtype="float32")

for j in np.arange(0,40,1):
  for i in np.arange(0,400,1):
    coilDataCut[i+j*400] = np.hstack(coilData[i])[j::40]

# Convert label data to one-hot array
classDataOH = np.zeros((400,2), dtype="float32")
classDataOH[np.arange(400), classData.astype(np.int)] = 1
classDataOH = classDataOH
classDataOH = np.tile(classDataOH, (40,1))

# Random shuffle
coilDataCut, classDataOH = shuffle(coilDataCut, classDataOH, random_state=0)

#classDataOH = np.reshape(classDataOH,[16000,2,1])
cDCut = np.reshape(coilDataCut,[16000,15,50,1])


# In[16]:

coillst = []
classlst = []
for i in np.arange(0,16000):
    coillst.append(cDCut[i])
    classlst.append(classDataOH[i])


# # CNN:

# In[17]:

tf.reset_default_graph()
# Placeholders for input and outputs
x_image = tf.placeholder(tf.float32, shape=[None, 15, 50, 1])
y_ = tf.placeholder(tf.float32, shape=[None, 2, 1])

# Input layer:
net = tflearn.layers.core.input_data(shape=[None, 15, 50, 1])

# First layer:
net = tflearn.layers.conv.conv_2d(x_image, 32, 2, activation="relu")
net = tflearn.layers.conv.max_pool_2d(net, 2)

# Fully connected layer:
net = tflearn.layers.core.fully_connected(net, 1024, activation="relu")

# Output layer:
net = tflearn.layers.core.fully_connected(net, 2, activation="softmax")

net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.001)


# In[19]:

model = tflearn.DNN(net)
model.fit(coillst, classlst, validation_set=0.1, batch_size=50)

そして、スローされたエラーは次のとおりです。

---------------------------------
Run id: BYPF4R
Log directory: /tmp/tflearn_logs/
---------------------------------
Training samples: 16000
Validation samples: 0
--

---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
    971     try:
--> 972       return fn(*args)
    973     except errors.OpError as e:

/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
    953                                  feed_dict, fetch_list, target_list,
--> 954                                  status, run_metadata)
    955 

/usr/lib/python3.5/contextlib.py in __exit__(self, type, value, traceback)
     65             try:
---> 66                 next(self.gen)
     67             except StopIteration:

/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/errors.py in raise_exception_on_not_ok_status()
    462           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 463           pywrap_tensorflow.TF_GetCode(status))
    464   finally:

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float
     [[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

During handling of the above exception, another exception occurred:

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-19-321574ec4e87> in <module>()
      2 model.fit(coillst, classlst, n_epoch=100, shuffle=True,          # validation_set=(X_test, Y_test),
      3           show_metric=True, batch_size=96,\
----> 4           snapshot_epoch=True)
      5 #model.fit(coillst, classlst)#, validation_set=0.1, batch_size=50)

/usr/local/lib/python3.5/dist-packages/tflearn/models/dnn.py in fit(self, X_inputs, Y_targets, n_epoch, validation_set, show_metric, batch_size, shuffle, snapshot_epoch, snapshot_step, excl_trainops, run_id)
    186                          daug_dict=daug_dict,
    187                          excl_trainops=excl_trainops,
--> 188                          run_id=run_id)
    189 
    190     def predict(self, X):

/usr/local/lib/python3.5/dist-packages/tflearn/helpers/trainer.py in fit(self, feed_dicts, n_epoch, val_feed_dicts, show_metric, snapshot_step, snapshot_epoch, shuffle_all, dprep_dict, daug_dict, excl_trainops, run_id)
    275                                                        snapshot_epoch,
    276                                                        snapshot_step,
--> 277                                                        show_metric)
    278                             global_loss += train_op.loss_value
    279                             if train_op.acc_value and global_acc:

/usr/local/lib/python3.5/dist-packages/tflearn/helpers/trainer.py in _train(self, training_step, snapshot_epoch, snapshot_step, show_metric)
    682         tflearn.is_training(True, session=self.session)
    683         _, train_summ_str = self.session.run([self.train, self.summ_op],
--> 684                                              feed_batch)
    685 
    686         # Retrieve loss value from summary string

/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    715     try:
    716       result = self._run(None, fetches, feed_dict, options_ptr,
--> 717                          run_metadata_ptr)
    718       if run_metadata:
    719         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    913     if final_fetches or final_targets:
    914       results = self._do_run(handle, final_targets, final_fetches,
--> 915                              feed_dict_string, options, run_metadata)
    916     else:
    917       results = []

/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
    963     if handle is None:
    964       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
--> 965                            target_list, options, run_metadata)
    966     else:
    967       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
    983         except KeyError:
    984           pass
--> 985       raise type(e)(node_def, op, message)
    986 
    987   def _extend_graph(self):

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float
     [[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

Caused by op 'Placeholder', defined at:
  File "/usr/lib/python3.5/runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "/usr/lib/python3.5/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/usr/lib/python3/dist-packages/ipykernel/__main__.py", line 3, in <module>
  File "/usr/lib/python3/dist-packages/traitlets/config/application.py", line 658, in launch_instance
    app.start()
  File "/usr/lib/python3/dist-packages/ipykernel/kernelapp.py", line 474, in start
  File "/usr/lib/python3/dist-packages/zmq/eventloop/ioloop.py", line 162, in start
    super(ZMQIOLoop, self).start()
  File "/usr/lib/python3/dist-packages/tornado/ioloop.py", line 887, in start
    handler_func(fd_obj, events)
  File "/usr/lib/python3/dist-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/usr/lib/python3/dist-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "/usr/lib/python3/dist-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "/usr/lib/python3/dist-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "/usr/lib/python3/dist-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/usr/lib/python3/dist-packages/ipykernel/kernelbase.py", line 276, in dispatcher
  File "/usr/lib/python3/dist-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell
  File "/usr/lib/python3/dist-packages/ipykernel/kernelbase.py", line 390, in execute_request
  File "/usr/lib/python3/dist-packages/ipykernel/ipkernel.py", line 196, in do_execute
  File "/usr/lib/python3/dist-packages/ipykernel/zmqshell.py", line 501, in run_cell
  File "/usr/lib/python3/dist-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "/usr/lib/python3/dist-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
    if self.run_code(code, result):
  File "/usr/lib/python3/dist-packages/IPython/core/interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-17-cffbacdceacf>", line 3, in <module>
    x_image = tf.placeholder(tf.float32, shape=[None, 15, 50, 1])
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/array_ops.py", line 1332, in placeholder
    name=name)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 1748, in _placeholder
    name=name)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py", line 749, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2380, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1298, in __init__
    self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype float
     [[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

「バニラ」テンソルフローで 2 つのリストを使用すると問題なく動作しますが、TFLearn では動作しません。だから、エラーがどこから来ているのかわからない

4

0 に答える 0