元の画像 この画像で接続された境界のクラスターを検出しようとしています。これらのエッジの長さと、個々のクラスターの回転半径を見つける必要があります。私はopencv 2.4.13を使用しています。次のコードを使用して、等高線を使用して質量クラスターを検出しました。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
void thresh_callback(int, void* );
/** @function main */
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
src = imread( argv[1], 1 );
/// Convert image to gray and blur it
cvtColor( src, src_gray, CV_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Create Window
char* source_window = "Source";
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, src );
createTrackbar( " Canny thresh:", "Source", &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
waitKey(0);
return(0);
}
/** @function thresh_callback */
void thresh_callback(int, void* )
{
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Detect edges using canny
Canny( src_gray, canny_output, thresh, thresh*2, 3 );
/// Find contours
findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
/// Get the moments
vector<Moments> mu(contours.size() );
for( int i = 0; i < contours.size(); i++ )
{ mu[i] = moments( contours[i], false ); }
/// Get the mass centers:
vector<Point2f> mc( contours.size() );
for( int i = 0; i < contours.size(); i++ )
{ mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 ); }
/// Draw contours
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
Mat drawing2 = Mat::zeros( canny_output.size(), CV_8UC3 );
for( int i = 0; i< contours.size(); i++ )
{if(arcLength( contours[i], true )>900)
{Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point() );
circle( drawing, mc[i], 4, color, -1, 8, 0 );}
}
int length=0;
int j=0;
for( int i = 0; i< contours.size(); i++ )
{
if(arcLength( contours[i], true )>length)
{
length=arcLength( contours[i], true );
j=i;
}
}
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing2, contours, j, color, 2, 8, hierarchy, 0, Point() );
circle( drawing2, mc[j], 4, color, -1, 8, 0 );
/// Show in a window
namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
namedWindow( "Contours2", CV_WINDOW_AUTOSIZE );
imshow( "Contours_max", drawing2 );
/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
printf("\t Info: Area and Contour Length \n");
for( int i = 0; i< contours.size(); i++ )
{
if(arcLength( contours[i], true )>900)
{printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(contours[i]), arcLength( contours[i], true ) );
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point() );
circle( drawing, mc[i], 4, color, -1, 8, 0 );}
}
}
問題は、共通の共有エッジの輪郭が異なり、論理的には同じクラスターである必要があることです。私が与えている次の輪郭画像。 一定の長さ以上で抽出された輪郭
同じ共有エッジを持つ多くの輪郭が、異なる輪郭として別々に取得されていることがわかります。それらを同じ境界クラスターの一部として欲しい。また、境界の長さと回転半径を検出する方法を教えてください。助けてください。