339

Raymond Chen の投稿に触発されて、4x4 の 2 次元配列があるとします。それを 90 度回転させる関数を記述します。Raymond は疑似コードのソリューションへのリンクを提供していますが、現実世界のものをいくつか見てみたいと思います。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

なります:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新: ニックの答えは最も簡単ですが、n^2 よりも優れた方法はありますか? マトリックスが 10000x10000 だったら?

4

64 に答える 64

455

O(n^2) 時間と O(1) 空間のアルゴリズム(回避策やおかしなものなし!)

+90 回転:

  1. 転置
  2. 各行を反転

-90 回転:

方法 1 :

  1. 転置
  2. 各列を反転

方法 2 :

  1. 各行を反転
  2. 転置

+180 回転:

方法 1 : +90 回転を 2 回

方法 2 : 各行を逆にしてから、各列を逆にする (転置)

-180 回転:

方法 1 : -90 回転を 2 回行う

方法 2 : 各列を反転し、次に各行を反転します

方法 3 : 同じなので +180 回転

于 2011-12-29T07:00:04.707 に答える
161

これはC#です

int[,] array = new int[4,4] {
    { 1,2,3,4 },
    { 5,6,7,8 },
    { 9,0,1,2 },
    { 3,4,5,6 }
};

int[,] rotated = RotateMatrix(array, 4);

static int[,] RotateMatrix(int[,] matrix, int n) {
    int[,] ret = new int[n, n];

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            ret[i, j] = matrix[n - j - 1, i];
        }
    }

    return ret;
}
于 2008-09-03T20:41:10.790 に答える
78

これは、結果を保持するために完全に新しい配列を使用する代わりに、所定の位置で回転を行うものです。配列の初期化と印刷を省略しました。これは正方形の配列でのみ機能しますが、任意のサイズにすることができます。メモリオーバーヘッドは配列の1つの要素のサイズに等しいため、必要なだけ大きな配列のローテーションを実行できます。

int a[4][4];
int n = 4;
int tmp;
for (int i = 0; i < n / 2; i++)
{
    for (int j = i; j < n - i - 1; j++)
    {
        tmp             = a[i][j];
        a[i][j]         = a[j][n-i-1];
        a[j][n-i-1]     = a[n-i-1][n-j-1];
        a[n-i-1][n-j-1] = a[n-j-1][i];
        a[n-j-1][i]     = tmp;
    }
}
于 2008-09-04T18:12:15.303 に答える
40

ここにはたくさんの優れたコードがありますが、コードのロジックをもう少しよく理解できるように、幾何学的に何が起こっているかを示したいだけです。これが私がこれにアプローチする方法です。

まず第一に、これを非常に簡単な移調と混同しないでください..

基本的なアイデアは、それをレイヤーとして扱い、一度に1つのレイヤーを回転させることです..

4x4があるとしましょう

1   2   3   4
5   6   7   8
9   10  11  12
13  14  15  16

時計回りに 90 回転すると、

13  9   5   1
14  10  6   2   
15  11  7   3
16  12  8   4

これを分解しましょう 最初に基本的に4つのコーナーを回転させます

1           4


13          16

次に、斜めになっている次のダイヤモンドを回転させます

    2
            8
9       
        15

そして2番目の歪んだダイヤモンド

        3
5           
            12
    14

これで外側のエッジが処理されるので、基本的には一度に 1 つのシェルを実行します。

最後に中央の四角形 (または奇数の場合は移動しない最後の要素のみ)

6   7
10  11

それでは、各レイヤーのインデックスを把握しましょう。常に最も外側のレイヤーで作業していると仮定して、

[0,0] -> [0,n-1], [0,n-1] -> [n-1,n-1], [n-1,n-1] -> [n-1,0], and [n-1,0] -> [0,0]
[0,1] -> [1,n-1], [1,n-2] -> [n-1,n-2], [n-1,n-2] -> [n-2,0], and [n-2,0] -> [0,1]
[0,2] -> [2,n-2], [2,n-2] -> [n-1,n-3], [n-1,n-3] -> [n-3,0], and [n-3,0] -> [0,2]

というように、エッジの途中まで続きます。

したがって、一般的なパターンは

[0,i] -> [i,n-i], [i,n-i] -> [n-1,n-(i+1)], [n-1,n-(i+1)] -> [n-(i+1),0], and [n-(i+1),0] to [0,i]
于 2013-11-25T17:56:28.943 に答える
37

以前の投稿で述べたように、任意のサイズの行列に対してO(1)行列の回転を実装するC#のコードを次に示します。簡潔さと読みやすさのために、エラーチェックや範囲チェックはありません。コード:

static void Main (string [] args)
{
  int [,]
    //  create an arbitrary matrix
    m = {{0, 1}, {2, 3}, {4, 5}};

  Matrix
    //  create wrappers for the data
    m1 = new Matrix (m),
    m2 = new Matrix (m),
    m3 = new Matrix (m);

  //  rotate the matricies in various ways - all are O(1)
  m1.RotateClockwise90 ();
  m2.Rotate180 ();
  m3.RotateAnitclockwise90 ();

  //  output the result of transforms
  System.Diagnostics.Trace.WriteLine (m1.ToString ());
  System.Diagnostics.Trace.WriteLine (m2.ToString ());
  System.Diagnostics.Trace.WriteLine (m3.ToString ());
}

class Matrix
{
  enum Rotation
  {
    None,
    Clockwise90,
    Clockwise180,
    Clockwise270
  }

  public Matrix (int [,] matrix)
  {
    m_matrix = matrix;
    m_rotation = Rotation.None;
  }

  //  the transformation routines
  public void RotateClockwise90 ()
  {
    m_rotation = (Rotation) (((int) m_rotation + 1) & 3);
  }

  public void Rotate180 ()
  {
    m_rotation = (Rotation) (((int) m_rotation + 2) & 3);
  }

  public void RotateAnitclockwise90 ()
  {
    m_rotation = (Rotation) (((int) m_rotation + 3) & 3);
  }

  //  accessor property to make class look like a two dimensional array
  public int this [int row, int column]
  {
    get
    {
      int
        value = 0;

      switch (m_rotation)
      {
      case Rotation.None:
        value = m_matrix [row, column];
        break;

      case Rotation.Clockwise90:
        value = m_matrix [m_matrix.GetUpperBound (0) - column, row];
        break;

      case Rotation.Clockwise180:
        value = m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column];
        break;

      case Rotation.Clockwise270:
        value = m_matrix [column, m_matrix.GetUpperBound (1) - row];
        break;
      }

      return value;
    }

    set
    {
      switch (m_rotation)
      {
      case Rotation.None:
        m_matrix [row, column] = value;
        break;

      case Rotation.Clockwise90:
        m_matrix [m_matrix.GetUpperBound (0) - column, row] = value;
        break;

      case Rotation.Clockwise180:
        m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column] = value;
        break;

      case Rotation.Clockwise270:
        m_matrix [column, m_matrix.GetUpperBound (1) - row] = value;
        break;
      }
    }
  }

  //  creates a string with the matrix values
  public override string ToString ()
  {
    int
      num_rows = 0,
      num_columns = 0;

    switch (m_rotation)
    {
    case Rotation.None:
    case Rotation.Clockwise180:
      num_rows = m_matrix.GetUpperBound (0);
      num_columns = m_matrix.GetUpperBound (1);
      break;

    case Rotation.Clockwise90:
    case Rotation.Clockwise270:
      num_rows = m_matrix.GetUpperBound (1);
      num_columns = m_matrix.GetUpperBound (0);
      break;
    }

    StringBuilder
      output = new StringBuilder ();

    output.Append ("{");

    for (int row = 0 ; row <= num_rows ; ++row)
    {
      if (row != 0)
      {
        output.Append (", ");
      }

      output.Append ("{");

      for (int column = 0 ; column <= num_columns ; ++column)
      {
        if (column != 0)
        {
          output.Append (", ");
        }

        output.Append (this [row, column].ToString ());
      }

      output.Append ("}");
    }

    output.Append ("}");

    return output.ToString ();
  }

  int [,]
    //  the original matrix
    m_matrix;

  Rotation
    //  the current view of the matrix
    m_rotation;
}

OK、手を上げます。回転時に元の配列に実際に変更を加えることはありません。ただし、オブジェクトがクラスのクライアントにローテーションされているように見える限り、オブジェクトが問題にならないOOシステムでは。現時点では、Matrixクラスは元の配列データへの参照を使用しているため、m1の値を変更すると、m2とm3も変更されます。新しい配列を作成し、それに値をコピーするためのコンストラクターへの小さな変更は、それを分類します。

于 2008-09-04T08:22:12.833 に答える
24

データを所定の位置でローテーションする必要がある場合(おそらく物理的に保存された表現を更新するため)、配列アクセスに間接層(おそらくインターフェイス)を追加する方が簡単でパフォーマンスが向上します。

interface IReadableMatrix
{
    int GetValue(int x, int y);
}

すでにこのインターフェイスを実装している場合は、次のようなデコレータクラスMatrixを介してローテーションできます。

class RotatedMatrix : IReadableMatrix
{
    private readonly IReadableMatrix _baseMatrix;

    public RotatedMatrix(IReadableMatrix baseMatrix)
    {
        _baseMatrix = baseMatrix;
    }

    int GetValue(int x, int y)
    {
        // transpose x and y dimensions
        return _baseMatrix(y, x);
    }
}

+ 90 / -90 / 180度の回転、水平/垂直の反転、スケーリングもすべてこの方法で実現できます。

特定のシナリオでパフォーマンスを測定する必要があります。ただし、O(n ^ 2)操作はO(1)呼び出しに置き換えられました。これは仮想メソッド呼び出しであり配列への直接アクセスよりも低速であるため、ローテーション後にローテーションされた配列が使用される頻度によって異なります。一度使用すれば、このアプローチが間違いなく勝ちます。ローテーションしてから長時間実行システムで数日間使用すると、インプレースローテーションのパフォーマンスが向上する可能性があります。また、前払い費用を受け入れることができるかどうかにも依存します。

すべてのパフォーマンスの問題と同様に、測定、測定、測定!

于 2008-10-11T10:33:49.047 に答える
19

これはJavaでのより良いバージョンです:幅と高さが異なるマトリックス用に作成しました

  • hはここで回転後のマトリックスの高さです
  • wはここで回転後のマトリックスの幅です

 

public int[][] rotateMatrixRight(int[][] matrix)
{
    /* W and H are already swapped */
    int w = matrix.length;
    int h = matrix[0].length;
    int[][] ret = new int[h][w];
    for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
            ret[i][j] = matrix[w - j - 1][i];
        }
    }
    return ret;
}


public int[][] rotateMatrixLeft(int[][] matrix)
{
    /* W and H are already swapped */
    int w = matrix.length;
    int h = matrix[0].length;   
    int[][] ret = new int[h][w];
    for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
            ret[i][j] = matrix[j][h - i - 1];
        }
    }
    return ret;
}

このコードは、NickBerardiの投稿に基づいています。

于 2009-07-07T14:37:25.000 に答える
18

Ruby の方法:.transpose.map &:reverse

于 2010-08-26T01:43:31.707 に答える
10

数人の人々がすでに新しいアレイの作成を含む例を挙げています。

考慮すべき他のいくつかの事柄:

(a)実際にデータを移動する代わりに、単に「回転した」配列を別の方法でトラバースします。

(b)回転をインプレースで行うのは、少し難しい場合があります。少しスクラッチの場所が必要になります(おそらく、1行または1列のサイズにほぼ等しい)。インプレース転置の実行に関する古代のACMペーパー(http://doi.acm.org/10.1145/355719.355729)がありますが、それらのサンプルコードは厄介なgotoを含むFORTRANです。

補遺:

http://doi.acm.org/10.1145/355611.355612は、別の、おそらく優れたインプレース転置アルゴリズムです。

于 2008-09-03T21:13:21.710 に答える
9

Nickの答えは、(NxNとは対照的に)わずかな変更を加えるだけでNxMアレイでも機能します。

string[,] orig = new string[n, m];
string[,] rot = new string[m, n];

...

for ( int i=0; i < n; i++ )
  for ( int j=0; j < m; j++ )
    rot[j, n - i - 1] = orig[i, j];

これについて考える1つの方法は、軸の中心(0,0)を左上隅から右上隅に移動したことです。あなたは単に一方から他方に移調しているだけです。

于 2008-09-03T21:04:30.827 に答える
7

時間 - O(N)、空間 - O(1)

public void rotate(int[][] matrix) {
    int n = matrix.length;
    for (int i = 0; i < n / 2; i++) {
        int last = n - 1 - i;
        for (int j = i; j < last; j++) {
            int top = matrix[i][j];
            matrix[i][j] = matrix[last - j][i];
            matrix[last - j][i] = matrix[last][last - j];
            matrix[last][last - j] = matrix[j][last];
            matrix[j][last] = top;
        }
    }
}
于 2014-01-21T17:47:49.750 に答える
5

これが私のRubyバージョンです(値は同じように表示されませんが、説明どおりに回転します)。

def rotate(matrix)
  result = []
  4.times { |x|
    result[x] = []
    4.times { |y|
      result[x][y] = matrix[y][3 - x]
    }
  }

  result
end

matrix = []
matrix[0] = [1,2,3,4]
matrix[1] = [5,6,7,8]
matrix[2] = [9,0,1,2]
matrix[3] = [3,4,5,6]

def print_matrix(matrix)
  4.times { |y|
    4.times { |x|
      print "#{matrix[x][y]} "
    }
    puts ""
  }
end

print_matrix(matrix)
puts ""
print_matrix(rotate(matrix))

出力:

1 5 9 3 
2 6 0 4 
3 7 1 5 
4 8 2 6 

4 3 2 1 
8 7 6 5 
2 1 0 9 
6 5 4 3
于 2008-09-03T20:59:46.033 に答える
4

これは、正方形のみのJavaによるスペース内回転メソッドです。正方形でない 2 次元配列の場合は、とにかく新しい配列を作成する必要があります。

private void rotateInSpace(int[][] arr) {
    int z = arr.length;
    for (int i = 0; i < z / 2; i++) {
        for (int j = 0; j < (z / 2 + z % 2); j++) {
            int x = i, y = j;
            int temp = arr[x][y];
            for (int k = 0; k < 4; k++) {
                int temptemp = arr[y][z - x - 1];
                arr[y][z - x - 1] = temp;
                temp = temptemp;

                int tempX = y;
                y = z - x - 1;
                x = tempX;
            }
        }
    }
}

新しい配列を作成して、任意のサイズの 2 次元配列を回転させるコード:

private int[][] rotate(int[][] arr) {
    int width = arr[0].length;
    int depth = arr.length;
    int[][] re = new int[width][depth];
    for (int i = 0; i < depth; i++) {
        for (int j = 0; j < width; j++) {
            re[j][depth - i - 1] = arr[i][j];
        }
    }
    return re;
}
于 2012-03-14T22:52:31.117 に答える
3

JavaScript でのディンプルの +90 疑似コードの実装 (たとえば、転置してから各行を逆にする):

function rotate90(a){
  // transpose from http://www.codesuck.com/2012/02/transpose-javascript-array-in-one-line.html
  a = Object.keys(a[0]).map(function (c) { return a.map(function (r) { return r[c]; }); });
  // row reverse
  for (i in a){
    a[i] = a[i].reverse();
  }
  return a;
}
于 2013-08-15T21:42:02.433 に答える
2

Java のバージョンは次のとおりです。

public static void rightRotate(int[][] matrix, int n) {
    for (int layer = 0; layer < n / 2; layer++) {
        int first = layer;
        int last = n - 1 - first;
        for (int i = first; i < last; i++) {
           int offset = i - first;
           int temp = matrix[first][i];
           matrix[first][i] = matrix[last-offset][first];
           matrix[last-offset][first] = matrix[last][last-offset];
           matrix[last][last-offset] = matrix[i][last];
           matrix[i][last] = temp;
        }
    }
}

このメソッドは、最初に最も外側のレイヤーを回転させ、次に内側のレイヤーに順番に移動します。

于 2013-05-21T02:50:59.140 に答える
2

[n,m] 2D 配列を右に 90 度回転する C# コード

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MatrixProject
{
    // mattrix class

    class Matrix{
        private int rows;
        private int cols;
        private int[,] matrix;

        public Matrix(int n){
            this.rows = n;
            this.cols = n;
            this.matrix = new int[this.rows,this.cols];

        }

        public Matrix(int n,int m){
            this.rows = n;
            this.cols = m;

            this.matrix = new int[this.rows,this.cols];
        }

        public void Show()
        {
            for (var i = 0; i < this.rows; i++)
            {
                for (var j = 0; j < this.cols; j++) {
                    Console.Write("{0,3}", this.matrix[i, j]);
                }
                Console.WriteLine();
            }                
        }

        public void ReadElements()
        {
           for (var i = 0; i < this.rows; i++)
                for (var j = 0; j < this.cols; j++)
                {
                    Console.Write("element[{0},{1}]=",i,j);
                    this.matrix[i, j] = Convert.ToInt32(Console.ReadLine());
                }            
        }


        // rotate [n,m] 2D array by 90 deg right
        public void Rotate90DegRight()
        {

            // create a mirror of current matrix
            int[,] mirror = this.matrix;

            // create a new matrix
            this.matrix = new int[this.cols, this.rows];

            for (int i = 0; i < this.rows; i++)
            {
                for (int j = 0; j < this.cols; j++)
                {
                    this.matrix[j, this.rows - i - 1] = mirror[i, j];
                }
            }

            // replace cols count with rows count
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;           
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            Matrix myMatrix = new Matrix(3,4);
            Console.WriteLine("Enter matrix elements:");
            myMatrix.ReadElements();
            Console.WriteLine("Matrix elements are:");
            myMatrix.Show();
            myMatrix.Rotate90DegRight();
            Console.WriteLine("Matrix rotated at 90 deg are:");
            myMatrix.Show();
            Console.ReadLine();
        }
    }
}

結果:

    Enter matrix elements:
    element[0,0]=1
    element[0,1]=2
    element[0,2]=3
    element[0,3]=4
    element[1,0]=5
    element[1,1]=6
    element[1,2]=7
    element[1,3]=8
    element[2,0]=9
    element[2,1]=10
    element[2,2]=11
    element[2,3]=12
    Matrix elements are:
      1  2  3  4
      5  6  7  8
      9 10 11 12
    Matrix rotated at 90 deg are:
      9  5  1
     10  6  2
     11  7  3
     12  8  4
于 2015-02-19T15:22:52.783 に答える
2

PHP:

<?php    
$a = array(array(1,2,3,4),array(5,6,7,8),array(9,0,1,2),array(3,4,5,6));
$b = array(); //result

while(count($a)>0)
{
    $b[count($a[0])-1][] = array_shift($a[0]);
    if (count($a[0])==0)
    {
         array_shift($a);
    }
}

PHP5.6から、sleakarray_map()呼び出しで配列の転置ができるようになりました。つまり、列は行に変換されます。

コード: (デモ)

$array = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 0, 1, 2],
    [3, 4, 5, 6]
];
$transposed = array_map(null, ...$array);

$転置:

[
    [1, 5, 9, 3],
    [2, 6, 0, 4],
    [3, 7, 1, 5],
    [4, 8, 2, 6]
]
于 2010-06-29T02:12:08.520 に答える
2

線形の観点から、次の行列を考えてみましょう。

    1 2 3        0 0 1
A = 4 5 6    B = 0 1 0
    7 8 9        1 0 0

次に、転置を行います

     1 4 7
A' = 2 5 8
     3 6 9

そして、B に対する A' のアクション、または A' に対する B のアクションを考えてみましょう。
それぞれ:

      7 4 1          3 6 9
A'B = 8 5 2    BA' = 2 5 8
      9 6 3          1 4 7

これは、任意の nxn 行列に対して拡張可能です。そして、この概念をコードにすばやく適用します。

void swapInSpace(int** mat, int r1, int c1, int r2, int c2)
{
    mat[r1][c1] ^= mat[r2][c2];
    mat[r2][c2] ^= mat[r1][c1];
    mat[r1][c1] ^= mat[r2][c2];
}

void transpose(int** mat, int size)
{
    for (int i = 0; i < size; i++)
    {
        for (int j = (i + 1); j < size; j++)
        {
            swapInSpace(mat, i, j, j, i);
        }
    }
}

void rotate(int** mat, int size)
{
    //Get transpose
    transpose(mat, size);

    //Swap columns
    for (int i = 0; i < size / 2; i++)
    {
        for (int j = 0; j < size; j++)
        {
            swapInSpace(mat, i, j, size - (i + 1), j);
        }
    }
}
于 2014-10-12T00:47:57.427 に答える
2

これは私の実装で、C、O(1) メモリの複雑さ、場所の回転、時計回りに 90 度です。

#include <stdio.h>

#define M_SIZE 5

static void initMatrix();
static void printMatrix();
static void rotateMatrix();

static int m[M_SIZE][M_SIZE];

int main(void){
    initMatrix();
    printMatrix();
    rotateMatrix();
    printMatrix();

    return 0;
}

static void initMatrix(){
    int i, j;

    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            m[i][j] = M_SIZE*i + j + 1;
        }
    }
}

static void printMatrix(){
    int i, j;

    printf("Matrix\n");
    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            printf("%02d ", m[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

static void rotateMatrix(){
    int r, c;

    for(r = 0; r < M_SIZE/2; r++){
        for(c = r; c < M_SIZE - r - 1; c++){
            int tmp = m[r][c];

            m[r][c] = m[M_SIZE - c - 1][r];
            m[M_SIZE - c - 1][r] = m[M_SIZE - r - 1][M_SIZE - c - 1];
            m[M_SIZE - r - 1][M_SIZE - c - 1] = m[c][M_SIZE - r - 1];
            m[c][M_SIZE - r - 1] = tmp;
        }
    }
}
于 2012-04-05T01:42:11.660 に答える
1

For i:= 0 to X do For j := 0 to X do graphic[j][i] := graphic2[X-i][j]

Xは、グラフィックが含まれる配列のサイズです。

于 2011-12-29T14:13:18.990 に答える
1

マトリックスを時計回りに90度回転させるためのCコード任意のM*Nマトリックスの代わりに

void rotateInPlace(int * arr[size][size], int row, int column){
    int i, j;
    int temp = row>column?row:column;
    int flipTill = row < column ? row : column;
    for(i=0;i<flipTill;i++){
        for(j=0;j<i;j++){
            swapArrayElements(arr, i, j);
        }
    }

    temp = j+1;

    for(i = row>column?i:0; i<row; i++){
            for(j=row<column?temp:0; j<column; j++){
                swapArrayElements(arr, i, j);
            }
    }

    for(i=0;i<column;i++){
        for(j=0;j<row/2;j++){
            temp = arr[i][j];
            arr[i][j] = arr[i][row-j-1];
            arr[i][row-j-1] = temp;
        }
    }
}
于 2013-02-25T18:18:33.897 に答える
1

#transpose は Ruby の Array クラスの標準メソッドです。

% irb
irb(main):001:0> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
=> [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]] 
irb(main):002:0> m.reverse.transpose
=> [[3, 9, 5, 1], [4, 0, 6, 2], [5, 1, 7, 3], [6, 2, 8, 4]]

実装は、C で記述された n^2 転置関数です。ここで確認できます : http://www.ruby-doc.org/core-1.9.3/Array.html#method-i-transpose「トランスポーズ」の横にある「ソースを切り替える」。

O(n^2) ソリューションよりもよく覚えていますが、特別に構築された行列 (スパース行列など) の場合のみです。

于 2012-07-27T21:05:43.040 に答える
1

ランタイム O(N^2) とメモリ O(1) の NxN 行列の Javascript ソリューション

  function rotate90(matrix){
    var length = matrix.length
    for(var row = 0; row < (length / 2); row++){
      for(var col = row; col < ( length - 1 - row); col++){
        var tmpVal = matrix[row][col];
        for(var i = 0; i < 4; i++){
          var rowSwap = col;
          var colSwap = (length - 1) - row;
          var poppedVal = matrix[rowSwap][colSwap];
          matrix[rowSwap][colSwap] = tmpVal;
          tmpVal = poppedVal;
          col = colSwap;
          row = rowSwap;
        }
      }
    }
  }
于 2015-09-02T03:53:10.053 に答える
1
short normal[4][4] = {{8,4,7,5},{3,4,5,7},{9,5,5,6},{3,3,3,3}};

short rotated[4][4];

for (int r = 0; r < 4; ++r)
{
  for (int c = 0; c < 4; ++c)
  {
    rotated[r][c] = normal[c][3-r];
  }
}

単純な C++ メソッドですが、大きな配列では大きなメモリ オーバーヘッドが発生します。

于 2009-06-04T02:12:10.967 に答える
1

+90 度と -90 度の両方の DRY JavaScript コードを探している人にとっては素晴らしい答えです。

          // Input: 1 2 3
          //        4 5 6
          //        7 8 9

          // Transpose: 
          //       1 4 7
          //       2 5 8
          //       3 6 9

          // Output: 
          // +90 Degree:
          //       7 4 1
          //       8 5 2
          //       9 6 3

          // -90 Degree:
          //      3 6 9
          //      2 5 8
          //      1 4 7

          // Rotate +90
         function rotate90(matrix) {

           matrix = transpose(matrix);
           matrix.map(function(array) {
             array.reverse();
           });

           return matrix;
         }

          // Rotate -90
         function counterRotate90(matrix) {
           var result = createEmptyMatrix(matrix.length);
           matrix = transpose(matrix);
           var counter = 0;

           for (var i = matrix.length - 1; i >= 0; i--) {
             result[counter] = matrix[i];
             counter++;
           }

           return result;
         }

          // Create empty matrix
         function createEmptyMatrix(len) {
           var result = new Array();
           for (var i = 0; i < len; i++) {
             result.push([]);
           }
           return result;
         }

          // Transpose the matrix
         function transpose(matrix) {
           // make empty array
           var len = matrix.length;
           var result = createEmptyMatrix(len);

           for (var i = 0; i < matrix.length; i++) {
             for (var j = 0; j < matrix[i].length; j++) {
               var temp = matrix[i][j];
               result[j][i] = temp;
             }
           }
           return result;
         }



          // Test Cases
         var array1 = [
           [1, 2],
           [3, 4]
         ];
         var array2 = [
           [1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]
         ];
         var array3 = [
           [1, 2, 3, 4],
           [5, 6, 7, 8],
           [9, 10, 11, 12],
           [13, 14, 15, 16]
         ];

          // +90 degress Rotation Tests

         var test1 = rotate90(array1);
         var test2 = rotate90(array2);
         var test3 = rotate90(array3);
         console.log(test1);
         console.log(test2);
         console.log(test3);

          // -90 degress Rotation Tests
         var test1 = counterRotate90(array1);
         var test2 = counterRotate90(array2);
         var test3 = counterRotate90(array3);
         console.log(test1);
         console.log(test2);
         console.log(test3);

于 2016-07-22T05:02:17.563 に答える
1

@dagorym: ああ、男。私はこれを「退屈だ、何を考えればいいのか」という良いパズルとしてぶら下がっていました。私は自分のインプレース転置コードを思いついたのですが、ここに来てあなたのコードが私のものとほとんど同じであることがわかりました...ああ、そうですね。これがRubyです。

require 'pp'
n = 10
a = []
n.times { a << (1..n).to_a }

pp a

0.upto(n/2-1) do |i|
  i.upto(n-i-2) do |j|
    tmp             = a[i][j]
    a[i][j]         = a[n-j-1][i]
    a[n-j-1][i]     = a[n-i-1][n-j-1]
    a[n-i-1][n-j-1] = a[j][n-i-1]
    a[j][n-i-1]     = tmp
  end
end

pp a
于 2008-09-07T17:41:19.233 に答える
1

行列の転置と回転の C コード (+/-90、+/-180)

  • 正方行列と非正方行列をサポートし、インプレースおよびコピー機能を備えています
  • 2D 配列と 1D ポインターの両方を論理行/列でサポート
  • 単体テスト; 使用例についてはテストを参照してください
  • テスト済み gcc -std=c90 -Wall -pedantic, MSVC17

`

#include <stdlib.h>
#include <memory.h>
#include <assert.h>

/* 
    Matrix transpose & rotate (+/-90, +/-180)
        Supports both 2D arrays and 1D pointers with logical rows/cols
        Supports square and non-square matrices, has in-place and copy features
        See tests for examples of usage
    tested gcc -std=c90 -Wall -pedantic, MSVC17
*/

typedef int matrix_data_t;  /* matrix data type */

void transpose(const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void transpose_inplace(matrix_data_t* data, int n );
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void rotate_inplace(int direction, matrix_data_t* data, int n);
void reverse_rows(matrix_data_t* data, int rows, int cols);
void reverse_cols(matrix_data_t* data, int rows, int cols);

/* test/compare fn */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols );

/* TESTS/USAGE */
void transpose_test() {

    matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };/* 3x3 square, odd length side */
    matrix_data_t sq3x3_cpy[9];
    matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };/* 2D 3x3 square */
    matrix_data_t sq3x3_2D_copy[3][3];

    /* expected test values */
    const matrix_data_t sq3x3_orig[9] = { 0,1,2,3,4,5,6,7,8 };
    const matrix_data_t sq3x3_transposed[9] = { 0,3,6,1,4,7,2,5,8};

    matrix_data_t sq4x4[16]= { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };/* 4x4 square, even length*/
    const matrix_data_t sq4x4_orig[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };
    const matrix_data_t sq4x4_transposed[16] = { 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15 };

    /* 2x3 rectangle */
    const matrix_data_t r2x3_orig[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r2x3_transposed[6] = { 0,3,1,4,2,5 };
    matrix_data_t r2x3_copy[6];

    matrix_data_t r2x3_2D[2][3] = { {0,1,2},{3,4,5} };  /* 2x3 2D rectangle */
    matrix_data_t r2x3_2D_t[3][2];

    /* matrix_data_t r3x2[6] = { 0,1,2,3,4,5 }; */
    matrix_data_t r3x2_copy[6];
    /* 3x2 rectangle */
    const matrix_data_t r3x2_orig[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r3x2_transposed[6] = { 0,2,4,1,3,5 };

    matrix_data_t r6x1[6] = { 0,1,2,3,4,5 };    /* 6x1 */
    matrix_data_t r6x1_copy[6];

    matrix_data_t r1x1[1] = { 0 };  /*1x1*/
    matrix_data_t r1x1_copy[1];

    /* 3x3 tests, 2D array tests */
    transpose_inplace(sq3x3, 3);    /* transpose in place */
    assert(!test_cmp(sq3x3, sq3x3_transposed, 3, 3));
    transpose_inplace(sq3x3, 3);    /* transpose again */
    assert(!test_cmp(sq3x3, sq3x3_orig, 3, 3));

    transpose(sq3x3, sq3x3_cpy, 3, 3);  /* transpose copy 3x3*/
    assert(!test_cmp(sq3x3_cpy, sq3x3_transposed, 3, 3));

    transpose((matrix_data_t*)sq3x3_2D, (matrix_data_t*)sq3x3_2D_copy, 3, 3);   /* 2D array transpose/copy */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_transposed, 3, 3));
    transpose_inplace((matrix_data_t*)sq3x3_2D_copy, 3);    /* 2D array transpose in place */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_orig, 3, 3));

    /* 4x4 tests */
    transpose_inplace(sq4x4, 4);    /* transpose in place */
    assert(!test_cmp(sq4x4, sq4x4_transposed, 4,4));
    transpose_inplace(sq4x4, 4);    /* transpose again */
    assert(!test_cmp(sq4x4, sq4x4_orig, 3, 3));

    /* 2x3,3x2 tests */
    transpose(r2x3_orig, r2x3_copy, 2, 3);
    assert(!test_cmp(r2x3_copy, r2x3_transposed, 3, 2));

    transpose(r3x2_orig, r3x2_copy, 3, 2);
    assert(!test_cmp(r3x2_copy, r3x2_transposed, 2,3));

    /* 2D array */
    transpose((matrix_data_t*)r2x3_2D, (matrix_data_t*)r2x3_2D_t, 2, 3);
    assert(!test_cmp((matrix_data_t*)r2x3_2D_t, r2x3_transposed, 3,2));

    /* Nx1 test, 1x1 test */
    transpose(r6x1, r6x1_copy, 6, 1);
    assert(!test_cmp(r6x1_copy, r6x1, 1, 6));

    transpose(r1x1, r1x1_copy, 1, 1);
    assert(!test_cmp(r1x1_copy, r1x1, 1, 1));

}

void rotate_test() {

    /* 3x3 square */
    const matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };
    const matrix_data_t sq3x3_r90[9] = { 6,3,0,7,4,1,8,5,2 };
    const matrix_data_t sq3x3_180[9] = { 8,7,6,5,4,3,2,1,0 };
    const matrix_data_t sq3x3_l90[9] = { 2,5,8,1,4,7,0,3,6 };
    matrix_data_t sq3x3_copy[9];

    /* 3x3 square, 2D */
    matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };

    /* 4x4, 2D */
    matrix_data_t sq4x4[4][4] = { { 0,1,2,3 },{ 4,5,6,7 },{ 8,9,10,11 },{ 12,13,14,15 } };
    matrix_data_t sq4x4_copy[4][4];
    const matrix_data_t sq4x4_r90[16] = { 12,8,4,0,13,9,5,1,14,10,6,2,15,11,7,3 };
    const matrix_data_t sq4x4_l90[16] = { 3,7,11,15,2,6,10,14,1,5,9,13,0,4,8,12 };
    const matrix_data_t sq4x4_180[16] = { 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 };

    matrix_data_t r6[6] = { 0,1,2,3,4,5 };  /* rectangle with area of 6 (1x6,2x3,3x2, or 6x1) */
    matrix_data_t r6_copy[6];
    const matrix_data_t r1x6_r90[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r1x6_l90[6] = { 5,4,3,2,1,0 };
    const matrix_data_t r1x6_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r2x3_r90[6] = { 3,0,4,1,5,2 };
    const matrix_data_t r2x3_l90[6] = { 2,5,1,4,0,3 };
    const matrix_data_t r2x3_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r3x2_r90[6] = { 4,2,0,5,3,1 };
    const matrix_data_t r3x2_l90[6] = { 1,3,5,0,2,4 };
    const matrix_data_t r3x2_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r6x1_r90[6] = { 5,4,3,2,1,0 };
    const matrix_data_t r6x1_l90[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r6x1_180[6] = { 5,4,3,2,1,0 };

    /* sq3x3 tests */
    rotate(90, sq3x3, sq3x3_copy, 3, 3);    /* +90 */
    assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
    rotate(-90, sq3x3, sq3x3_copy, 3, 3);   /* -90 */
    assert(!test_cmp(sq3x3_copy, sq3x3_l90, 3, 3));
    rotate(180, sq3x3, sq3x3_copy, 3, 3);   /* 180 */
    assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
    /* sq3x3 in-place rotations */
    memcpy( sq3x3_copy, sq3x3, 3 * 3 * sizeof(matrix_data_t));
    rotate_inplace(90, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
    rotate_inplace(-90, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3)); /* back to 0 orientation */
    rotate_inplace(180, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
    rotate_inplace(-180, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3));
    rotate_inplace(180, (matrix_data_t*)sq3x3_2D, 3);/* 2D test */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D, sq3x3_180, 3, 3));

    /* sq4x4 */
    rotate(90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_r90, 4, 4));
    rotate(-90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_l90, 4, 4));
    rotate(180, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_180, 4, 4));

    /* r6 as 1x6 */
    rotate(90, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_r90, 1, 6));
    rotate(-90, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_l90, 1, 6));
    rotate(180, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_180, 1, 6));

    /* r6 as 2x3 */
    rotate(90, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_r90, 2, 3));
    rotate(-90, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_l90, 2, 3));
    rotate(180, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_180, 2, 3));

    /* r6 as 3x2 */
    rotate(90, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_r90, 3, 2));
    rotate(-90, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_l90, 3, 2));
    rotate(180, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_180, 3, 2));

    /* r6 as 6x1 */
    rotate(90, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_r90, 6, 1));
    rotate(-90, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_l90, 6, 1));
    rotate(180, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_180, 6, 1));
}

/* test comparison fn, return 0 on match else non zero */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols) {

    int r, c;

    for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
            if ((lhs + r * cols)[c] != (rhs + r * cols)[c])
                return -1;
        }
    }
    return 0;
}

/*
Reverse values in place of each row in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] ->  [C B A]
[D E F]     [F E D]
*/
void reverse_rows(matrix_data_t* data, int rows, int cols) {

    int r, c;
    matrix_data_t temp;
    matrix_data_t* pRow = NULL;

    for (r = 0; r < rows; ++r) {
        pRow = (data + r * cols);
        for (c = 0; c < (int)(cols / 2); ++c) { /* explicit truncate */
            temp = pRow[c];
            pRow[c] = pRow[cols - 1 - c];
            pRow[cols - 1 - c] = temp;
        }
    }
}

/*
Reverse values in place of each column in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] ->  [D E F]
[D E F]     [A B C]
*/
void reverse_cols(matrix_data_t* data, int rows, int cols) {

    int r, c;
    matrix_data_t temp;
    matrix_data_t* pRowA = NULL;
    matrix_data_t* pRowB = NULL;

    for (c = 0; c < cols; ++c) {
        for (r = 0; r < (int)(rows / 2); ++r) { /* explicit truncate */
            pRowA = data + r * cols;
            pRowB = data + cols * (rows - 1 - r);
            temp = pRowA[c];
            pRowA[c] = pRowB[c];
            pRowB[c] = temp;
        }
    }
}

/* Transpose NxM matrix to MxN matrix in O(n) time */
void transpose(const matrix_data_t* src, matrix_data_t* dst, int N, int M) {

    int i;
    for (i = 0; i<N*M; ++i) dst[(i%M)*N + (i / M)] = src[i];    /* one-liner version */

    /*
    expanded version of one-liner:  calculate XY based on array index, then convert that to YX array index
    int i,j,x,y;
    for (i = 0; i < N*M; ++i) {
    x = i % M;
    y = (int)(i / M);
    j = x * N + y;
    dst[j] = src[i];
    }
    */

    /*
    nested for loop version
    using ptr arithmetic to get proper row/column
    this is really just dst[col][row]=src[row][col]

    int r, c;

    for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
            (dst + c * rows)[r] = (src + r * cols)[c];
        }
    }
    */
}

/*
Transpose NxN matrix in place
*/
void transpose_inplace(matrix_data_t* data, int N ) {

    int r, c;
    matrix_data_t temp;

    for (r = 0; r < N; ++r) {
        for (c = r; c < N; ++c) { /*start at column=row*/
                                    /* using ptr arithmetic to get proper row/column */
                                    /* this is really just
                                    temp=dst[col][row];
                                    dst[col][row]=src[row][col];
                                    src[row][col]=temp;
                                    */
            temp = (data + c * N)[r];
            (data + c * N)[r] = (data + r * N)[c];
            (data + r * N)[c] = temp;
        }
    }
}

/*
Rotate 1D or 2D src matrix to dst matrix in a direction (90,180,-90)
Precondition:  src and dst are 2d matrices with dimensions src[rows][cols] and dst[cols][rows] or 1D pointers with logical rows/cols
*/
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols) {

    switch (direction) {
    case -90:
        transpose(src, dst, rows, cols);
        reverse_cols(dst, cols, rows);
        break;
    case 90:
        transpose(src, dst, rows, cols);
        reverse_rows(dst, cols, rows);
        break;
    case 180:
    case -180:
        /* bit copy to dst, use in-place reversals */
        memcpy(dst, src, rows*cols*sizeof(matrix_data_t));
        reverse_cols(dst, cols, rows);
        reverse_rows(dst, cols, rows);
        break;
    }
}

/*
Rotate array in a direction.
Array must be NxN 2D or 1D array with logical rows/cols
Direction can be (90,180,-90,-180)
*/
void rotate_inplace( int direction, matrix_data_t* data, int n) {

    switch (direction) {
    case -90:
        transpose_inplace(data, n);
        reverse_cols(data, n, n);
        break;
    case 90:
        transpose_inplace(data, n);
        reverse_rows(data, n, n);
        break;
    case 180:
    case -180:
        reverse_cols(data, n, n);
        reverse_rows(data, n, n);
        break;
    }
}

`

于 2018-03-03T18:56:51.283 に答える
1

パイソンでは:

import numpy as np

a = np.array(
    [
        [1, 2, 3, 4],
        [5, 6, 7, 8],
        [9, 0, 1, 2],
        [3, 4, 5, 6]
    ]
)

print(a)
print(b[::-1, :].T)
于 2021-06-13T16:32:49.023 に答える
0
#include <iostream>
#include <iomanip>

using namespace std;
const int SIZE=3;
void print(int a[][SIZE],int);
void rotate(int a[][SIZE],int);

void main()
{
    int a[SIZE][SIZE]={{11,22,33},{44,55,66},{77,88,99}};
    cout<<"the array befor rotate\n";

    print(a,SIZE);
    rotate( a,SIZE);
    cout<<"the array after rotate\n";
    print(a,SIZE);
    cout<<endl;

}

void print(int a[][SIZE],int SIZE)
{
    int i,j;
    for(i=0;i<SIZE;i++)
       for(j=0;j<SIZE;j++)
          cout<<a[i][j]<<setw(4);
}

void rotate(int a[][SIZE],int SIZE)
{
    int temp[3][3],i,j;
    for(i=0;i<SIZE;i++)
       for(j=0;j<SIZE/2.5;j++)
       {
           temp[i][j]= a[i][j];
           a[i][j]= a[j][SIZE-i-1] ;
           a[j][SIZE-i-1] =temp[i][j];

       }
}
于 2009-04-20T15:32:20.460 に答える
0

現在のすべてのソリューションには、スクラッチ スペースとして O(n^2) のオーバーヘッドがあります (これにより、汚い OOP 詐欺師は除外されます!)。これは、O(1) メモリ使用量のソリューションで、マトリックスをその場で 90 度右に回転させます。ネジの拡張性、この吸盤は速く走ります!

#include <algorithm>
#include <cstddef>

// Rotates an NxN matrix of type T 90 degrees to the right.
template <typename T, size_t N>
void rotate_matrix(T (&matrix)[N][N])
{
    for(size_t i = 0; i < N; ++i)
        for(size_t j = 0; j <= (N-i); ++j)
            std::swap(matrix[i][j], matrix[j][i]);
}

免責事項: 私は実際にこれをテストしませんでした。虫たたきで遊ぼう!

于 2010-06-29T03:27:42.137 に答える
0

このソリューションは、正方形または長方形の寸法を気にしません。4x5 または 5x4 または 4x4 を回転させることもできます。サイズも気にしません。この実装は、rotate90 メソッドを呼び出すたびに新しい配列を作成することに注意してください。元の配列はまったく変更されません。

public static void main(String[] args) {
    int[][] a = new int[][] { 
                    { 1, 2, 3, 4 }, 
                    { 5, 6, 7, 8 }, 
                    { 9, 0, 1, 2 }, 
                    { 3, 4, 5, 6 }, 
                    { 7, 8, 9, 0 } 
                  };
    int[][] rotate180 = rotate90(rotate90(a));
    print(rotate180);
}

static int[][] rotate90(int[][] a) {
    int[][] ret = new int[a[0].length][a.length];
    for (int i = 0; i < a.length; i++) {
        for (int j = 0; j < a[i].length; j++) {
            ret[j][a.length - i - 1] = a[i][j];
        }
    }
    return ret;
}

static void print(int[][] array) {
    for (int i = 0; i < array.length; i++) {
        System.out.print("[");
        for (int j = 0; j < array[i].length; j++) {
            System.out.print(array[i][j]);
            System.out.print(" ");
        }
        System.out.println("]");
    }
}
于 2018-06-22T07:47:55.997 に答える
-1

これは、最近過大評価されているインタビューの質問です。

私の提案は次のとおりです。この問題を解決するためのクレイジーな提案でインタビュアーに混乱させないでください。ホワイトボードを使用して入力配列のインデックスを描画し、次に出力配列のインデックスを描画します。回転前後の列インデックスのサンプルを以下に示します。

30 --> 00
20 --> 01
10 --> 02
00 --> 03

31 --> 10
21 --> 11
11 --> 12
01 --> 13

回転後の数のパターンに注目してください。

クリーン カット Java ソリューションの下に提供されます。それはテストされ、動作します:

 Input:
    M A C P 
    B N L D 
    Y E T S 
    I W R Z 

    Output:
    I Y B M 
    W E N A 
    R T L C 
    Z S D P 

/**
 * (c) @author "G A N MOHIM"
 * Oct 3, 2015
 * RotateArrayNintyDegree.java
 */
package rotatearray;

public class RotateArrayNintyDegree {

    public char[][] rotateArrayNinetyDegree(char[][] input) {
        int k; // k is used to generate index for output array

        char[][] output = new char[input.length] [input[0].length];

        for (int i = 0; i < input.length; i++) {
            k = 0;
            for (int j = input.length-1; j >= 0; j--) {
                output[i][k] = input[j][i]; // note how i is used as column index, and j as row
                k++;
            }
        }

        return output;
    }

    public void printArray(char[][] charArray) {
        for (int i = 0; i < charArray.length; i++) {
            for (int j = 0; j < charArray[0].length; j++) {
                System.out.print(charArray[i][j] + " ");
            }
            System.out.println();
        }


    }

    public static void main(String[] args) {
        char[][] input = 
                { {'M', 'A', 'C', 'P'},
                  {'B', 'N', 'L', 'D'},
                  {'Y', 'E', 'T', 'S'},
                  {'I', 'W', 'R', 'Z'}
                };

        char[][] output = new char[input.length] [input[0].length];

        RotateArrayNintyDegree rotationObj = new RotateArrayNintyDegree();
        rotationObj.printArray(input);

        System.out.println("\n");
        output = rotationObj.rotateArrayNinetyDegree(input);
        rotationObj.printArray(output);

    }

}
于 2015-10-05T03:01:31.623 に答える
-1

これは、作業を行う C# 静的ジェネリック メソッドです。変数には適切な名前が付けられているため、アルゴリズムのアイデアを簡単に理解できます。

private static T[,] Rotate180 <T> (T[,] matrix)
{
    var height = matrix.GetLength (0);
    var width = matrix.GetLength (1);
    var answer = new T[height, width];

    for (int y = 0; y < height / 2; y++)
    {
        int topY = y;
        int bottomY = height - 1 - y;
        for (int topX = 0; topX < width; topX++)
        {
            var bottomX = width - topX - 1;
            answer[topY, topX] = matrix[bottomY, bottomX];
            answer[bottomY, bottomX] = matrix[topY, topX];
        }
    }

    if (height % 2 == 0)
        return answer;

    var centerY = height / 2;
    for (int leftX = 0; leftX < Mathf.CeilToInt(width / 2f); leftX++)
    {
        var rightX = width - 1 - leftX;
        answer[centerY, leftX] = matrix[centerY, rightX];
        answer[centerY, rightX] = matrix[centerY, leftX];
    }

    return answer;
}
于 2016-06-25T09:34:24.830 に答える
-1

マトリックスをその場で 90 度回転させる JavaScript ソリューション:

function rotateBy90(m) {
  var length = m.length;
  //for each layer of the matrix
  for (var first = 0; first < length >> 1; first++) {
    var last = length - 1 - first;
    for (var i = first; i < last; i++) {
      var top = m[first][i]; //store top
      m[first][i] = m[last - i][first]; //top = left
      m[last - i][first] = m[last][last - i]; //left = bottom
      m[last][last - i] = m[i][last]; //bottom = right
      m[i][last] = top; //right = top
    }
  }
  return m;
}
于 2014-11-27T01:24:26.823 に答える
-1
/* 90-degree clockwise:
   temp_array         = left_col
   left_col           = bottom_row
   bottom_row         = reverse(right_col)
   reverse(right_col) = reverse(top_row)
   reverse(top_row)   = temp_array
*/
void RotateClockwise90(int ** arr, int lo, int hi) {

  if (lo >= hi) 
    return;

  for (int i=lo; i<hi; i++) {
    int j = lo+hi-i;
    int temp   = arr[i][lo];
    arr[i][lo] = arr[hi][i];
    arr[hi][i] = arr[j][hi];
    arr[j][hi] = arr[lo][j];
    arr[lo][j] = temp;
  }

  RotateClockwise90(arr, lo+1, hi-1);
}
于 2015-06-26T18:30:47.233 に答える
-1

これは、配列を 90 度回転させる単純な C コードです。お役に立てれば。

#include <stdio.h>

void main(){
int arr[3][4] =     {85, 2, 85,  4,
                     85, 6,  7, 85,
                     9, 85, 11, 12};


int arr1[4][3];

int i = 0, j = 0;

for(i=0;i<4;i++){
int k = 2;//k = (number of columns in the new array arr1 - 1)
for(j=0;j<3;j++){
arr1[i][j]=arr[k][i];
k--;
}
}

int l, m;
for(l=0;l<4;l++){
for(m=0;m<3;m++){
printf("%d ", arr1[l][m]);
}
printf("\n");
}
}//end main
于 2016-02-20T19:24:37.877 に答える
-1

再帰的に非常にきれいに実行できます。これがgolangでの私の実装です!

go golang で nxn 行列を追加メモリなしで再帰的にローテーションする

func rot90(a [][]int) {
    n := len(a)
    if n == 1 {
        return
    }
    for i := 0; i < n; i++ {
        a[0][i], a[n-1-i][n-1] = a[n-1-i][n-1], a[0][i]
    }
    rot90(a[1:])
}
于 2016-10-07T18:19:58.123 に答える
-1
    public static void rotateMatrix(int[,] matrix)
    {
        //C#, to rotate an N*N matrix in place
        int n = matrix.GetLength(0);
        int layers =  n / 2;
        int temp, temp2;

        for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself 
        {
            int offset = 0;
            while (offset < n - 2 * i - 1)
            {
                // top right <- top left 
                temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
                matrix[i + offset, n - i - 1] = matrix[i, i + offset];   

                //bottom right <- top right 
                temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
                matrix[n - i - 1, n - i - 1 - offset] = temp;  

                //bottom left <- bottom right 
                temp = matrix[n - i - 1 - offset, i];
                matrix[n - i - 1 - offset, i] = temp2;  

                //top left <- bottom left 
                matrix[i, i + offset] = temp; 

                offset++;
            }
        }
    }
于 2016-07-01T09:55:39.920 に答える
-1

@dimpleから送信された優れたアルゴリズムのC#サンプル コード:

/* Author: Dudi,
 * http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */

using System.IO;
using System;

class Program
{
    static void Main()
    {
        Console.WriteLine("Rotating this matrix by 90+ degree:");

        int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
        //int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};

        print2dArray(ref values);
        transpose2dArray(ref values);
        //print2dArray(ref values);
        reverse2dArray(ref values);
        Console.WriteLine("Output:");
        print2dArray(ref values);
    }

    static void print2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                Console.Write(matrix[n,m] +"\t");
            }
            Console.WriteLine();        
        }
        Console.WriteLine();
    }

    static void transpose2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                if(n>m){
                    int tmp = matrix[n,m];
                    matrix[n,m] = matrix[m,n];
                    matrix[m,n] = tmp;
                }
            }
        }
    }

    static void reverse2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen/2; m++){                
                int tmp = matrix[n,m];
                matrix[n,m] = matrix[n, mLen-1-m];
                matrix[n,mLen-1-m] = tmp;
            }
        }
    }
}

/*
Rotating this matrix by 90+ degree:                                                                                                                                             
1       2       3                                                                                                                                                               
4       5       6                                                                                                                                                               
7       8       9                                                                                                                                                               

Output:                                                                                                                                                                         
7       4       1                                                                                                                                                               
8       5       2                                                                                                                                                               
9       6       3  
*/
于 2016-06-16T23:06:21.683 に答える
-1

PHP:

array_unshift($array, null);
$array = call_user_func_array("array_map", $array);

長方形の 2 次元配列を 90 度回転する必要がある場合は、上記のコードの前または後に (必要な回転方向に応じて) 次の行を追加します。

$array = array_reverse($array);
于 2014-10-03T13:41:41.290 に答える
-1

ベクトルのベクトルを使用して時計回りに 90 度回転します。

 #include<iostream>
 #include<vector>
 #include<algorithm>
 using namespace std;
 //Rotate a Matrix by 90 degrees
void rotateMatrix(vector<vector<int> > &matrix){
   int n=matrix.size();
   for(int i=0;i<n;i++){
    for(int j=i+1;j<n;j++){
        swap(matrix[i][j],matrix[j][i]);
    }
 }
     for(int i=0;i<n;i++){
        reverse(matrix[i].begin(),matrix[i].end());
       }
   }

    int main(){

   int n;
   cout<<"enter the size of the matrix:"<<endl;
     while (cin >> n) {
    vector< vector<int> > m;
      cout<<"enter the elements"<<endl;
    for (int i = 0; i < n; i++) {
        m.push_back(vector<int>(n));
        for (int j = 0; j < n; j++)
            scanf("%d", &m[i][j]);
    }
      cout<<"the rotated matrix is:"<<endl;
      rotateMatrix(m);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
            cout << m[i][j] << ' ';
        cout << endl;
    }
   }
   return 0;
 }
于 2015-08-09T13:47:17.597 に答える
-2

私のライブラリAbacusUtil を試してください:

@Test
public void test_42519() throws Exception {
    final IntMatrix matrix = IntMatrix.range(0, 16).reshape(4);

    N.println("======= original =======================");
    matrix.println();
    // print out:
    //    [0, 1, 2, 3]
    //    [4, 5, 6, 7]
    //    [8, 9, 10, 11]
    //    [12, 13, 14, 15]

    N.println("======= rotate 90 ======================");
    matrix.rotate90().println();
    // print out:
    //    [12, 8, 4, 0]
    //    [13, 9, 5, 1]
    //    [14, 10, 6, 2]
    //    [15, 11, 7, 3]

    N.println("======= rotate 180 =====================");
    matrix.rotate180().println();
    // print out:
    //    [15, 14, 13, 12]
    //    [11, 10, 9, 8]
    //    [7, 6, 5, 4]
    //    [3, 2, 1, 0]

    N.println("======= rotate 270 ======================");
    matrix.rotate270().println();
    // print out:
    //    [3, 7, 11, 15]
    //    [2, 6, 10, 14]
    //    [1, 5, 9, 13]
    //    [0, 4, 8, 12]

    N.println("======= transpose =======================");
    matrix.transpose().println();
    // print out:
    //    [0, 4, 8, 12]
    //    [1, 5, 9, 13]
    //    [2, 6, 10, 14]
    //    [3, 7, 11, 15]

    final IntMatrix bigMatrix = IntMatrix.range(0, 10000_0000).reshape(10000);

    // It take about 2 seconds to rotate 10000 X 10000 matrix.
    Profiler.run(1, 2, 3, "sequential", () -> bigMatrix.rotate90()).printResult();

    // Want faster? Go parallel. 1 second to rotate 10000 X 10000 matrix.
    final int[][] a = bigMatrix.array();
    final int[][] c = new int[a[0].length][a.length];
    final int n = a.length;
    final int threadNum = 4;

    Profiler.run(1, 2, 3, "parallel", () -> {
        IntStream.range(0, n).parallel(threadNum).forEach(i -> {
            for (int j = 0; j < n; j++) {
                c[i][j] = a[n - j - 1][i];
            }
        });
    }).printResult();
}
于 2017-06-13T00:52:49.677 に答える
-2

O(1) メモリ アルゴリズム:

  1. 最も外側のデータを回転すると、以下の結果が得られます。

    [3][9][5][1]
    [4][6][7][2]
    [5][0][1][3]
    [6][2][8][4]
    

このローテーションを行うには、

    dest[j][n-1-i] = src[i][j]

以下を観察してください: a(0,0) -> a(0,3) a(0,3) -> a(3,3) a(3,3) -> a(3,0) a(3,0) ) -> a(0,0)

したがって、これは円です。1 つのループで N 個の要素を回転できます。この N-1 ループを実行すると、最も外側の要素を回転できます。

  1. これで、インナーは 2X2 と同じ質問になります。

したがって、次のように結論付けることができます。

function rotate(array, N)
{
    Rotate outer-most data
    rotate a new array with N-2 or you can do the similar action following step1
}
于 2013-03-19T13:50:13.557 に答える