1

テンソルフローを使用してデコンボリューション ネットワークを構築しようとしています。

これが私のコードです。

def decoder(self, activations):
    with tf.variable_scope("Decoder") as scope:

        h0 = conv2d(activations, 128, name = "d_h0_conv_1")
        h0 = lrelu(h0)
        shape = activations.get_shape().as_list()
        h0 = deconv2d(h0, [shape[0], 2 * shape[1], 2 * shape[2], 128], name = "d_h0_deconv_1") 
        h0 = lrelu(h0)

        h1 = conv2d(h0, 128, name = "d_h1_conv_1")
        h1 = lrelu(h1)
        h1 = conv2d(h1, 64, name = "d_h1_conv_2")
        h1 = lrelu(h1)
        shape = h1.get_shape().as_list()
        h1 = deconv2d(h1, [shape[0], 2 * shape[1], 2 * shape[2], 64], name = "d_h1_deconv_1") 
        h1 = lrelu(h1)

        h2 = conv2d(h1, 64, name = "d_h2_conv_1")
        h2 = lrelu(h2)
        h2 = conv2d(h2, 3, name = "d_h2_conv_2")

        output = h2
        print shape


    return output

パラメータのアクティベーションは、基本的に VGG19 ネットワークからのアクティベーションです。

ここに deconv2d() 関数があります

def deconv2d(input_, output_shape,
         k_h=3, k_w=3, d_h=1, d_w=1, stddev=0.02,
         name="deconv2d", with_w=False):
with tf.variable_scope(name):
    # filter : [height, width, output_channels, in_channels]
    w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
                        initializer=tf.contrib.layers.variance_scaling_initializer())

    deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
                        strides=[1, d_h, d_w, 1], padding='SAME')


    biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
    deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())

    return deconv

そしてこれは損失です

with tf.name_scope("total_loss"):
        self.loss = tf.nn.l2_loss(self.output - self.images)

出力形状互換エラーは発生しません。ただし、最適化により、

 with tf.variable_scope("Optimizer"):
        optimizer = tf.train.AdamOptimizer(config.learning_rate)
        grad_and_vars = optimizer.compute_gradients(self.loss, var_list = self.d_vars)
        self.d_optim = optimizer.apply_gradients(grad_and_vars)

テンソルフローはエラーを生成し、

Traceback (most recent call last):
File "main.py", line 74, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-   packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "main.py", line 59, in main
dcgan.train(FLAGS)
File "/home/junyonglee/workspace/bi_sim/sumGAN/model.py", line 121, in train
grad_and_vars = optimizer.compute_gradients(self.loss, var_list = self.d_vars)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 354, in compute_gradients
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gradients_impl.py", line 500, in gradients
in_grad.set_shape(t_in.get_shape())
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 425, in set_shape
self._shape = self._shape.merge_with(shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/tensor_shape.py", line 585, in merge_with
(self, other))
ValueError: Shapes (30, 256, 256, 64) and (30, 128, 128, 64) are not compatible

デコーダーの出力サイズは (30, 256, 256 3) で、30 はバッチ サイズです。

レイヤー「d_h1_deconv_1」のように見えますが、グローバル勾配 (op ユニットへの勾配フロー) は (30, 256, 256, 64) の形状であり、ローカル勾配 (入力に対する勾配) は (30, 128, 128, 64)、これは転置畳み込みを行っているという非常に明白な事実です。

conv2d_transpose() を使用して適切にバックプロップする方法を知っている人はいますか? ありがとうございました!

4

1 に答える 1