11

これについて話している他の投稿を見たことがありますが、これらの誰でも私を助けることができます。Windows x6マシンでPython 3.6.0でjupyterノートブックを使用しています。大規模なデータセットがありますが、モデルを実行するためにその一部のみを保持しています。

これは私が使用したコードの一部です:

df = loan_2.reindex(columns= ['term_clean','grade_clean', 'annual_inc', 'loan_amnt', 'int_rate','purpose_clean','installment','loan_status_clean'])
df.fillna(method= 'ffill').astype(int)
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import StandardScaler
imp = Imputer(missing_values='NaN', strategy='median', axis=0)
array = df.values
y = df['loan_status_clean'].values
imp.fit(array)
array_imp = imp.transform(array)

y2= y.reshape(1,-1)
imp.fit(y2)
y_imp= imp.transform(y2)
X = array_imp[:,0:4]
Y = array_imp[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
seed = 7
scoring = 'accuracy'

from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import  BernoulliNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.ensemble import AdaBoostClassifier
from sklearn.neural_network import MLPClassifier

# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('BNB', BernoulliNB()))
models.append(('RF', RandomForestClassifier()))
models.append(('GBM', AdaBoostClassifier()))
models.append(('NN', MLPClassifier()))
models.append(('SVM', SVC()))

# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)

最後のコードを実行すると、次のエラーが表示されます。


ValueError                                Traceback (most recent call last)
<ipython-input-262-1e6860ba615b> in <module>()
      4 for name, model in models:
      5         kfold = model_selection.KFold(n_splits=10, random_state=seed)
----> 6         cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
      7         results.append(cv_results)
      8         names.append(name)

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\model_selection\_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch)
    138                                               train, test, verbose, None,
    139                                               fit_params)
--> 140                       for train, test in cv_iter)
    141     return np.array(scores)[:, 0]
    142 

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
    756             # was dispatched. In particular this covers the edge
    757             # case of Parallel used with an exhausted iterator.
--> 758             while self.dispatch_one_batch(iterator):
    759                 self._iterating = True
    760             else:

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)
    606                 return False
    607             else:
--> 608                 self._dispatch(tasks)
    609                 return True
    610 

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.py in _dispatch(self, batch)
    569         dispatch_timestamp = time.time()
    570         cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 571         job = self._backend.apply_async(batch, callback=cb)
    572         self._jobs.append(job)
    573 

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in apply_async(self, func, callback)
    107     def apply_async(self, func, callback=None):
    108         """Schedule a func to be run"""
--> 109         result = ImmediateResult(func)
    110         if callback:
    111             callback(result)

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in __init__(self, batch)
    324         # Don't delay the application, to avoid keeping the input
    325         # arguments in memory
--> 326         self.results = batch()
    327 
    328     def get(self):

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self)
    129 
    130     def __call__(self):
--> 131         return [func(*args, **kwargs) for func, args, kwargs in self.items]
    132 
    133     def __len__(self):

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0)
    129 
    130     def __call__(self):
--> 131         return [func(*args, **kwargs) for func, args, kwargs in self.items]
    132 
    133     def __len__(self):

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
    236             estimator.fit(X_train, **fit_params)
    237         else:
--> 238             estimator.fit(X_train, y_train, **fit_params)
    239 
    240     except Exception as e:

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\linear_model\logistic.py in fit(self, X, y, sample_weight)
   1172         X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64,
   1173                          order="C")
-> 1174         check_classification_targets(y)
   1175         self.classes_ = np.unique(y)
   1176         n_samples, n_features = X.shape

C:\Users\dalila\Anaconda\lib\site-packages\sklearn\utils\multiclass.py in check_classification_targets(y)
    170     if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',
    171             'multilabel-indicator', 'multilabel-sequences']:
--> 172         raise ValueError("Unknown label type: %r" % y_type)
    173 
    174 

ValueError: Unknown label type: 'continuous'

簡単な仮定: 私のデータは一般的に NaN と欠損値からきれいです。

4

2 に答える 2