5

Barabasi-Albert ネットワークで Ising 相転移をシミュレートしようとしており、Ising グリッド シミュレーションで観察されるように、磁化やエネルギーなどの観測可能な結果を​​再現しようとしています。ただし、結果の解釈に問題があります。物理が間違っているのか、実装にエラーがあるのか​​ わかりません。最小限の作業例を次に示します。

import numpy as np 
import networkx as nx
import random
import math

## sim params

# coupling constant
J = 1.0 # ferromagnetic

# temperature range, in units of J/kT
t0 = 1.0
tn = 10.0
nt = 10.
T = np.linspace(t0, tn, nt)

# mc steps
steps = 1000

# generate BA network, 200 nodes with preferential attachment to 3rd node
G = nx.barabasi_albert_graph(200, 3)

# convert csr matrix to adjacency matrix, a_{ij}
adj_matrix = nx.adjacency_matrix(G)
top = adj_matrix.todense()
N = len(top)

# initialize spins in the network, ferromagnetic
def init(N):
    return np.ones(N)

# calculate net magnetization
def netmag(state):
    return np.sum(state)

# calculate net energy, E = \sum J *a_{ij} *s_i *s_j
def netenergy(N, state):
    en = 0.
    for i in range(N):
        for j in range(N):
            en += (-J)* top[i,j]*state[i]*state[j] 
    return en

# random sampling, metropolis local update
def montecarlo(state, N, beta, top):

    # initialize difference in energy between E_{old} and E_{new}
    delE = []

    # pick a random source node
    rsnode = np.random.randint(0,N)

    # get the spin of this node
    s2 = state[rsnode]

    # calculate energy by summing up its interaction and append to delE
    for tnode in range(N):
        s1 = state[tnode]
        delE.append(J * top[tnode, rsnode] *state[tnode]* state[rsnode])

    # calculate probability of a flip
    prob = math.exp(-np.sum(delE)*beta)

    # if this probability is greater than rand[0,1] drawn from an uniform distribution, accept it
    # else retain current state
    if prob> random.random():
        s2 *= -1
    state[rsnode] = s2

    return state

def simulate(N, top):

    # initialize arrays for observables
    magnetization = []
    energy = []
    specificheat = []
    susceptibility = []

    for count, t in enumerate(T):


        # some temporary variables
        e0 = m0 = e1 = m1 = 0.

        print 't=', t

        # initialize spin vector
        state = init(N)

        for i in range(steps):

            montecarlo(state, N, 1/t, top)

            mag = netmag(state)
            ene = netenergy(N, state)

            e0 = e0 + ene
            m0 = m0 + mag
            e1 = e0 + ene * ene
            m1 = m0 + mag * mag

        # calculate thermodynamic variables and append to initialized arrays
        energy.append(e0/( steps * N))
        magnetization.append( m0 / ( steps * N)) 
        specificheat.append( e1/steps - e0*e0/(steps*steps) /(N* t * t))
        susceptibility.append( m1/steps - m0*m0/(steps*steps) /(N* t *t))

        print energy, magnetization, specificheat, susceptibility

        plt.figure(1)
        plt.plot(T, np.abs(magnetization), '-ko' )
        plt.xlabel('Temperature (kT)')
        plt.ylabel('Average Magnetization per spin')

        plt.figure(2)
        plt.plot(T, energy, '-ko' )
        plt.xlabel('Temperature (kT)')
        plt.ylabel('Average energy')

        plt.figure(3)
        plt.plot(T, specificheat, '-ko' )
        plt.xlabel('Temperature (kT)')
        plt.ylabel('Specific Heat')

        plt.figure(4)
        plt.plot(T, susceptibility, '-ko' )
        plt.xlabel('Temperature (kT)')
        plt.ylabel('Susceptibility')

simulate(N, top)

観察結果

  1. 温度の関数としての磁化傾向
  2. 比熱

見落としがある場合は、コードにコメントを付けてみました。

質問:

  1. 磁化傾向は合っていますか?温度が上昇すると磁化は減少しますが、相転移の臨界温度を特定することはできません。
  2. 温度が上昇するとエネルギーはゼロに近づきます。これは、イジング グリッドで観測されたものと一致しているようです。負の比熱値が得られるのはなぜですか?
  3. モンテカルロのステップ数をどのように選択しますか? これは、ネットワーク ノードの数に基づいて試行錯誤するだけですか?

編集: 02.06: シミュレーションが反強磁性構成で失敗する: シミュレーションが反強磁性構成で壊れる

4

1 に答える 1