matlab で lsqnonlin を使用して、浮動パラメーターの数が異なる関数をフィッティングしています。
最初のフィッティングでは、2.5 の resnorm というより良いフィッティングが得られます。matlab が表示します:
Norm of First-order
Iteration Func-count f(x) step optimality
0 24 17492.8 9.07e+05
1 48 143.52 0.106514 2.14e+04
2 72 28.1836 0.322225 9.21e+03
3 96 8.22318 0.190289 471
4 120 4.64683 0.106685 469
5 144 4.21385 0.110651 50.6
6 168 3.84595 0.132576 6.57
7 192 3.80318 0.0785982 0.574
8 216 3.80298 0.00714585 0.0696
9 240 3.80298 8.99227e-05 0.0165
2 番目のフィッティングの resnorm は 3.6 です。matlab が表示します:
Norm of First-order
Iteration Func-count f(x) step optimality
0 38 17492.8 9.07e+05
1 76 158.945 0.112853 3.12e+04
2 114 31.4081 0.296493 9.11e+03
3 152 8.51237 0.171055 627
4 190 4.73721 0.485675 1.01e+03
5 228 4.25786 0.268581 121
6 266 3.82232 0.424431 12.9
7 304 3.67385 0.483489 13
8 342 3.65582 0.290754 21
9 380 3.64699 0.331376 25.9
10 418 3.64327 0.237147 16
11 456 3.64078 0.236815 13.3
12 494 3.63925 0.203176 9.54
13 532 3.63819 0.186138 7.32
14 570 3.63747 0.165213 5.52
15 608 3.63697 0.148463 4.2
16 646 3.63663 0.132661 3.17
17 684 3.6364 0.118115 2.35
18 722 3.63624 0.102959 1.73
19 760 3.63616 0.0842739 1.2
20 798 3.63612 0.0589477 0.731
21 836 3.63611 0.0309845 0.391
22 874 3.6361 0.0119255 0.192
これらのフィッティングの両方:"lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance."
resnorm を見ずに、フィッティング結果の表示を解釈するにはどうすればよいですか?
私が見る限り、第 1 フィッティングの「ステップの規範」ははるかに少なくなっています。f(x) と 1 次の最適性の最終結果は似ています。
各列の意味 それらをどのように解釈しますか?