私は現在、Ethem Alpaydin による「Introduction to machine learning」を読んでおり、最も近い重心分類器に出くわし、それを実装しようとしました。分類子を正しく実装したと思いますが、68% の精度しか得られません。それで、最も近い重心分類器自体は非効率的ですか、それとも実装にエラーがありますか (以下) ?
データ セットには 1372 個のデータ ポイントが含まれ、それぞれに 4 つの特徴があり、2 つの出力クラスがあります My MATLAB implementation :
DATA = load("-ascii", "data.txt");
#DATA is 1372x5 matrix with 762 data points of class 0 and 610 data points of class 1
#there are 4 features of each data point
X = DATA(:,1:4); #matrix to store all features
X0 = DATA(1:762,1:4); #matrix to store the features of class 0
X1 = DATA(763:1372,1:4); #matrix to store the features of class 1
X0 = X0(1:610,:); #to make sure both datasets have same size for prior probability to be equal
Y = DATA(:,5); # to store outputs
mean0 = sum(X0)/610; #mean of features of class 0
mean1 = sum(X1)/610; #mean of featurs of class 1
count = 0;
for i = 1:1372
pre = 0;
cost1 = X(i,:)*(mean0'); #calculates the dot product of dataset with mean of features of both classes
cost2 = X(i,:)*(mean1');
if (cost1<cost2)
pre = 1;
end
if pre == Y(i)
count = count+1; #counts the number of correctly predicted values
end
end
disp("accuracy"); #calculates the accuracy
disp((count/1372)*100);