16

GMT [グリニッジ標準時]を取得したいのですが、システムの日時に依存したくありません。基本的に、GMTの計算には[インド]のような時間同期サーバーを使用したいin.pool.ntp.orgのですが、間違った方向に進んでいる可能性があります。

これをJavaで行う方法は?

タイムサーバーから時間を取得するためのJavaライブラリはありますか?

4

5 に答える 5

22

sp0d は正しくありません。

timeInfo.getReturnTime(); // Returns time at which time message packet was received by local machine

したがって、受信したものではなく、現在のシステム時刻を返すだけです。TimeInfo のマニュアル ページを参照してください。
使用する必要があります

timeInfo.getMessage().getTransmitTimeStamp().getTime();

代わりは。
したがって、コード ブロックは次のようになります。

String TIME_SERVER = "time-a.nist.gov";   
NTPUDPClient timeClient = new NTPUDPClient();
InetAddress inetAddress = InetAddress.getByName(TIME_SERVER);
TimeInfo timeInfo = timeClient.getTime(inetAddress);
long returnTime = timeInfo.getMessage().getTransmitTimeStamp().getTime();
Date time = new Date(returnTime);
于 2013-01-16T11:02:10.857 に答える
8

これは私がどこかで見つけたコードです..そして私はそれを使用しています。Apache Commons ライブラリを使用します。

タイム サーバーのリスト: NIST インターネット タイム サービス

 import java.net.InetAddress;
 import java.util.Date;
 import org.apache.commons.net.ntp.NTPUDPClient; 
 import org.apache.commons.net.ntp.TimeInfo;

     public class TimeLookup {

    public static void main() throws Exception {
                String TIME_SERVER = "time-a.nist.gov";   
        NTPUDPClient timeClient = new NTPUDPClient();
        InetAddress inetAddress = InetAddress.getByName(TIME_SERVER);
        TimeInfo timeInfo = timeClient.getTime(inetAddress);
        long returnTime = timeInfo.getReturnTime();
        Date time = new Date(returnTime);
        System.out.println("Time from " + TIME_SERVER + ": " + time);
    }
}

からの出力時間を返しますtime-d.nist.gov:Sun Nov 25 06:04:34 IST 2012

于 2012-11-25T00:42:39.763 に答える
1

このリンクは、NTPサーバーから現在の時刻をフェッチするプログラムに貼り付けることができるNtpMessage.javaと呼ばれるJavaクラスを示しています。

次のリンクで、下部にある[添付ファイル]セクションを見つけて、NtpMessage.javaとSntpClient.javaをダウンロードし、Javaアプリケーションに貼り付けます。それはすべての仕事をし、あなたに時間をフェッチします。

http://support.ntp.org/bin/view/Support/JavaSntpClient

コードがダウンした場合は、コードをコピーして貼り付けます。

import java.text.DecimalFormat;
import java.text.SimpleDateFormat;
import java.util.Date;


/**
 * This class represents a NTP message, as specified in RFC 2030.  The message
 * format is compatible with all versions of NTP and SNTP.
 *
 * This class does not support the optional authentication protocol, and
 * ignores the key ID and message digest fields.
 * 
 * For convenience, this class exposes message values as native Java types, not
 * the NTP-specified data formats.  For example, timestamps are
 * stored as doubles (as opposed to the NTP unsigned 64-bit fixed point
 * format).
 * 
 * However, the contructor NtpMessage(byte[]) and the method toByteArray()
 * allow the import and export of the raw NTP message format.
 * 
 * 
 * Usage example
 * 
 * // Send message
 * DatagramSocket socket = new DatagramSocket();
 * InetAddress address = InetAddress.getByName("ntp.cais.rnp.br");
 * byte[] buf = new NtpMessage().toByteArray();
 * DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 123);
 * socket.send(packet);
 * 
 * // Get response
 * socket.receive(packet);
 * System.out.println(msg.toString());
 * 
 *  
 * This code is copyright (c) Adam Buckley 2004
 *
 * This program is free software; you can redistribute it and/or modify it 
 * under the terms of the GNU General Public License as published by the Free 
 * Software Foundation; either version 2 of the License, or (at your option) 
 * any later version.  A HTML version of the GNU General Public License can be
 * seen at http://www.gnu.org/licenses/gpl.html
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT 
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 
 * more details.
 * 
 * 
 * Comments for member variables are taken from RFC2030 by David Mills,
 * University of Delaware.
 * 
 * Number format conversion code in NtpMessage(byte[] array) and toByteArray()
 * inspired by http://www.pps.jussieu.fr/~jch/enseignement/reseaux/
 * NTPMessage.java which is copyright (c) 2003 by Juliusz Chroboczek
 * 
 * @author Adam Buckley
 */
public class NtpMessage
{
    /**
     * This is a two-bit code warning of an impending leap second to be
     * inserted/deleted in the last minute of the current day.  It's values
     * may be as follows:
     * 
     * Value     Meaning
     * -----     -------
     * 0         no warning
     * 1         last minute has 61 seconds
     * 2         last minute has 59 seconds)
     * 3         alarm condition (clock not synchronized)
     */
    public byte leapIndicator = 0;


    /**
     * This value indicates the NTP/SNTP version number.  The version number
     * is 3 for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI).
     * If necessary to distinguish between IPv4, IPv6 and OSI, the
     * encapsulating context must be inspected.
     */
    public byte version = 3;


    /**
     * This value indicates the mode, with values defined as follows:
     * 
     * Mode     Meaning
     * ----     -------
     * 0        reserved
     * 1        symmetric active
     * 2        symmetric passive
     * 3        client
     * 4        server
     * 5        broadcast
     * 6        reserved for NTP control message
     * 7        reserved for private use
     * 
     * In unicast and anycast modes, the client sets this field to 3 (client)
     * in the request and the server sets it to 4 (server) in the reply. In
     * multicast mode, the server sets this field to 5 (broadcast).
     */ 
    public byte mode = 0;


    /**
     * This value indicates the stratum level of the local clock, with values
     * defined as follows:
     * 
     * Stratum  Meaning
     * ----------------------------------------------
     * 0        unspecified or unavailable
     * 1        primary reference (e.g., radio clock)
     * 2-15     secondary reference (via NTP or SNTP)
     * 16-255   reserved
     */
    public short stratum = 0;


    /**
     * This value indicates the maximum interval between successive messages,
     * in seconds to the nearest power of two. The values that can appear in
     * this field presently range from 4 (16 s) to 14 (16284 s); however, most
     * applications use only the sub-range 6 (64 s) to 10 (1024 s).
     */
    public byte pollInterval = 0;


    /**
     * This value indicates the precision of the local clock, in seconds to
     * the nearest power of two.  The values that normally appear in this field
     * range from -6 for mains-frequency clocks to -20 for microsecond clocks
     * found in some workstations.
     */
    public byte precision = 0;


    /**
     * This value indicates the total roundtrip delay to the primary reference
     * source, in seconds.  Note that this variable can take on both positive
     * and negative values, depending on the relative time and frequency
     * offsets. The values that normally appear in this field range from
     * negative values of a few milliseconds to positive values of several
     * hundred milliseconds.
     */
    public double rootDelay = 0;


    /**
     * This value indicates the nominal error relative to the primary reference
     * source, in seconds.  The values  that normally appear in this field
     * range from 0 to several hundred milliseconds.
     */ 
    public double rootDispersion = 0;


    /**
     * This is a 4-byte array identifying the particular reference source.
     * In the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or
     * stratum-1 (primary) servers, this is a four-character ASCII string, left
     * justified and zero padded to 32 bits. In NTP Version 3 secondary
     * servers, this is the 32-bit IPv4 address of the reference source. In NTP
     * Version 4 secondary servers, this is the low order 32 bits of the latest
     * transmit timestamp of the reference source. NTP primary (stratum 1)
     * servers should set this field to a code identifying the external
     * reference source according to the following list. If the external
     * reference is one of those listed, the associated code should be used.
     * Codes for sources not listed can be contrived as appropriate.
     * 
     * Code     External Reference Source
     * ----     -------------------------
     * LOCL     uncalibrated local clock used as a primary reference for
     *          a subnet without external means of synchronization
     * PPS      atomic clock or other pulse-per-second source
     *          individually calibrated to national standards
     * ACTS     NIST dialup modem service
     * USNO     USNO modem service
     * PTB      PTB (Germany) modem service
     * TDF      Allouis (France) Radio 164 kHz
     * DCF      Mainflingen (Germany) Radio 77.5 kHz
     * MSF      Rugby (UK) Radio 60 kHz
     * WWV      Ft. Collins (US) Radio 2.5, 5, 10, 15, 20 MHz
     * WWVB     Boulder (US) Radio 60 kHz
     * WWVH     Kaui Hawaii (US) Radio 2.5, 5, 10, 15 MHz
     * CHU      Ottawa (Canada) Radio 3330, 7335, 14670 kHz
     * LORC     LORAN-C radionavigation system
     * OMEG     OMEGA radionavigation system
     * GPS      Global Positioning Service
     * GOES     Geostationary Orbit Environment Satellite
     */
    public byte[] referenceIdentifier = {0, 0, 0, 0};


    /**
     * This is the time at which the local clock was last set or corrected, in
     * seconds since 00:00 1-Jan-1900.
     */
    public double referenceTimestamp = 0;


    /**
     * This is the time at which the request departed the client for the
     * server, in seconds since 00:00 1-Jan-1900.
     */
    public double originateTimestamp = 0;


    /**
     * This is the time at which the request arrived at the server, in seconds
     * since 00:00 1-Jan-1900.
     */
    public double receiveTimestamp = 0;


    /**
     * This is the time at which the reply departed the server for the client,
     * in seconds since 00:00 1-Jan-1900.
     */
    public double transmitTimestamp = 0;



    /**
     * Constructs a new NtpMessage from an array of bytes.
     */
    public NtpMessage(byte[] array)
    {
        // See the packet format diagram in RFC 2030 for details 
        leapIndicator = (byte) ((array[0] >> 6) & 0x3);
        version = (byte) ((array[0] >> 3) & 0x7);
        mode = (byte) (array[0] & 0x7);
        stratum = unsignedByteToShort(array[1]);
        pollInterval = array[2];
        precision = array[3];

        rootDelay = (array[4] * 256.0) + 
            unsignedByteToShort(array[5]) +
            (unsignedByteToShort(array[6]) / 256.0) +
            (unsignedByteToShort(array[7]) / 65536.0);

        rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + 
            unsignedByteToShort(array[9]) +
            (unsignedByteToShort(array[10]) / 256.0) +
            (unsignedByteToShort(array[11]) / 65536.0);

        referenceIdentifier[0] = array[12];
        referenceIdentifier[1] = array[13];
        referenceIdentifier[2] = array[14];
        referenceIdentifier[3] = array[15];

        referenceTimestamp = decodeTimestamp(array, 16);
        originateTimestamp = decodeTimestamp(array, 24);
        receiveTimestamp = decodeTimestamp(array, 32);
        transmitTimestamp = decodeTimestamp(array, 40);
    }



    /**
     * Constructs a new NtpMessage in client -> server mode, and sets the
     * transmit timestamp to the current time.
     */
    public NtpMessage()
    {
        // Note that all the other member variables are already set with
        // appropriate default values.
        this.mode = 3;
        this.transmitTimestamp = (System.currentTimeMillis()/1000.0) + 2208988800.0; 
    }



    /**
     * This method constructs the data bytes of a raw NTP packet.
     */
    public byte[] toByteArray()
    {
        // All bytes are automatically set to 0
        byte[] p = new byte[48];

        p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);
        p[1] = (byte) stratum;
        p[2] = (byte) pollInterval;
        p[3] = (byte) precision;

        // root delay is a signed 16.16-bit FP, in Java an int is 32-bits
        int l = (int) (rootDelay * 65536.0);
        p[4] = (byte) ((l >> 24) & 0xFF);
        p[5] = (byte) ((l >> 16) & 0xFF);
        p[6] = (byte) ((l >> 8) & 0xFF);
        p[7] = (byte) (l & 0xFF);

        // root dispersion is an unsigned 16.16-bit FP, in Java there are no
        // unsigned primitive types, so we use a long which is 64-bits 
        long ul = (long) (rootDispersion * 65536.0);
        p[8] = (byte) ((ul >> 24) & 0xFF);
        p[9] = (byte) ((ul >> 16) & 0xFF);
        p[10] = (byte) ((ul >> 8) & 0xFF);
        p[11] = (byte) (ul & 0xFF);

        p[12] = referenceIdentifier[0];
        p[13] = referenceIdentifier[1];
        p[14] = referenceIdentifier[2];
        p[15] = referenceIdentifier[3];

        encodeTimestamp(p, 16, referenceTimestamp);
        encodeTimestamp(p, 24, originateTimestamp);
        encodeTimestamp(p, 32, receiveTimestamp);
        encodeTimestamp(p, 40, transmitTimestamp);

        return p; 
    }



    /**
     * Returns a string representation of a NtpMessage
     */
    public String toString()
    {
        String precisionStr =
            new DecimalFormat("0.#E0").format(Math.pow(2, precision));

        return "Leap indicator: " + leapIndicator + "\n" +
            "Version: " + version + "\n" +
            "Mode: " + mode + "\n" +
            "Stratum: " + stratum + "\n" +
            "Poll: " + pollInterval + "\n" +
            "Precision: " + precision + " (" + precisionStr + " seconds)\n" + 
            "Root delay: " + new DecimalFormat("0.00").format(rootDelay*1000) + " ms\n" +
            "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion*1000) + " ms\n" + 
            "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + "\n" +
            "Reference timestamp: " + timestampToString(referenceTimestamp) + "\n" +
            "Originate timestamp: " + timestampToString(originateTimestamp) + "\n" +
            "Receive timestamp:   " + timestampToString(receiveTimestamp) + "\n" +
            "Transmit timestamp:  " + timestampToString(transmitTimestamp);
    }



    /**
     * Converts an unsigned byte to a short.  By default, Java assumes that
     * a byte is signed.
     */
    public static short unsignedByteToShort(byte b)
    {
        if((b & 0x80)==0x80) return (short) (128 + (b & 0x7f));
        else return (short) b;
    }



    /**
     * Will read 8 bytes of a message beginning at <code>pointer</code>
     * and return it as a double, according to the NTP 64-bit timestamp
     * format.
     */
    public static double decodeTimestamp(byte[] array, int pointer)
    {
        double r = 0.0;

        for(int i=0; i<8; i++)
        {
            r += unsignedByteToShort(array[pointer+i]) * Math.pow(2, (3-i)*8);
        }

        return r;
    }



    /**
     * Encodes a timestamp in the specified position in the message
     */
    public static void encodeTimestamp(byte[] array, int pointer, double timestamp)
    {
        // Converts a double into a 64-bit fixed point
        for(int i=0; i<8; i++)
        {
            // 2^24, 2^16, 2^8, .. 2^-32
            double base = Math.pow(2, (3-i)*8);

            // Capture byte value
            array[pointer+i] = (byte) (timestamp / base);

            // Subtract captured value from remaining total
            timestamp = timestamp - (double) (unsignedByteToShort(array[pointer+i]) * base);
        }

        // From RFC 2030: It is advisable to fill the non-significant
        // low order bits of the timestamp with a random, unbiased
        // bitstring, both to avoid systematic roundoff errors and as
        // a means of loop detection and replay detection.
        array[7] = (byte) (Math.random()*255.0);
    }



    /**
     * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a
     * formatted date/time string. 
     */
    public static String timestampToString(double timestamp)
    {
        if(timestamp==0) return "0";

        // timestamp is relative to 1900, utc is used by Java and is relative
        // to 1970 
        double utc = timestamp - (2208988800.0);

        // milliseconds
        long ms = (long) (utc * 1000.0);

        // date/time
        String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));

        // fraction
        double fraction = timestamp - ((long) timestamp);
        String fractionSting = new DecimalFormat(".000000").format(fraction);

        return date + fractionSting;
    }



    /**
     * Returns a string representation of a reference identifier according
     * to the rules set out in RFC 2030.
     */
    public static String referenceIdentifierToString(byte[] ref, short stratum, byte version)
    {
        // From the RFC 2030:
        // In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)
        // or stratum-1 (primary) servers, this is a four-character ASCII
        // string, left justified and zero padded to 32 bits.
        if(stratum==0 || stratum==1)
        {
            return new String(ref);
        }

        // In NTP Version 3 secondary servers, this is the 32-bit IPv4
        // address of the reference source.
        else if(version==3)
        {
            return unsignedByteToShort(ref[0]) + "." +
                unsignedByteToShort(ref[1]) + "." +
                unsignedByteToShort(ref[2]) + "." +
                unsignedByteToShort(ref[3]);
        }

        // In NTP Version 4 secondary servers, this is the low order 32 bits
        // of the latest transmit timestamp of the reference source.
        else if(version==4)
        {
            return "" + ((unsignedByteToShort(ref[0]) / 256.0) + 
                (unsignedByteToShort(ref[1]) / 65536.0) +
                (unsignedByteToShort(ref[2]) / 16777216.0) +
                (unsignedByteToShort(ref[3]) / 4294967296.0));
        }

        return "";
    }
}   
于 2011-08-16T16:23:47.500 に答える