オーバーロードされたno-opバージョンの print(void)を実装する方が簡単ではないでしょうか?
ああ、そうだね。関数テンプレートとオーバーロードは、実行時にこれを簡単に処理します。
#ifマクロまたはstatic-compile-time-assertsで使用するために、コンパイル時にこれを処理したい場合は、やや粘着性があります。
しかし、前者だけが必要なので、出発点として次のようなものを提案できますか。
((GCC)3.4.4&4.0.1でテスト済み。-アップグレードする必要があります!)
#include <iostream>
using namespace std;
struct Foo {
void operator()() {}
};
struct Bar {
bool operator()() { return false; }
};
Foo foo;
Bar bar;
bool baz() { return false; }
void bang() {}
struct IsVoid
{
typedef char YES[1];
typedef char NO[2];
/* Testing functions for void return value. */
template <typename T>
static IsVoid::NO & testFunction( T (*f)() );
static IsVoid::YES & testFunction( void (*f)() );
static IsVoid::NO & testFunction( ... );
/* Testing Objects for "void operator()()" void return value. */
template <typename C, void (C::*)()>
struct hasOperatorMethodStruct { };
template <typename C>
static YES & testMethod( hasOperatorMethodStruct<C, &C::operator()> * );
template <typename C>
static NO & testMethod( ... );
/* Function object method to call to perform test. */
template <typename T>
bool operator() (T & t)
{
return ( ( sizeof(IsVoid::testFunction(t)) == sizeof(IsVoid::YES) )
|| ( sizeof(IsVoid::testMethod<T>(0)) == sizeof(IsVoid::YES) ) );
}
};
#define BOUT(X) cout << # X " = " << boolToString(X) << endl;
const char * boolToString( int theBool )
{
switch ( theBool )
{
case true: return "true";
case false: return "false";
default: return "unknownvalue";
}
}
int main()
{
IsVoid i;
BOUT( IsVoid()(foo) );
BOUT( IsVoid()(bar) );
BOUT( IsVoid()(baz) );
BOUT( IsVoid()(bang) );
cout << endl;
BOUT( i(foo) );
BOUT( i(bar) );
BOUT( i(baz) );
BOUT( i(bang) );
}
さて、私は問題の多くを見始めます。
私たちはこれに沿って何かをすることができますが:
#include <iostream>
using namespace std;
struct FooA {
void operator()() {}
};
struct FooB {
bool operator()() { return false; }
};
struct FooC {
int operator()() { return 17; }
};
struct FooD {
double operator()() { return 3.14159; }
};
FooA fooA;
FooB fooB;
FooC fooC;
FooD fooD;
void barA() {}
bool barB() { return false; }
int barC() { return 17; }
double barD() { return 3.14159; }
namespace N
{
/* Functions */
template <typename R>
R run( R (*f)() ) { return (*f)(); }
bool run( void (*f)() ) { (*f)(); return true; }
/* Methods */
template <typename T, typename R>
R run( T & t, R (T::*f)() ) { return (t .* f) (); }
template <typename T>
bool run( T & t, void (T::*f)() ) { (t .* f) (); return true; }
};
#define SHOW(X) cout << # X " = " << (X) << endl;
#define BOUT(X) cout << # X " = " << boolToString(X) << endl;
const char * boolToString( int theBool )
{
switch ( theBool )
{
case true: return "true";
case false: return "false";
default: return "unknownvalue";
}
}
int main()
{
SHOW( N::run( barA ) );
BOUT( N::run( barA ) );
SHOW( N::run( barB ) );
BOUT( N::run( barB ) );
SHOW( N::run( barC ) );
SHOW( N::run( barD ) );
cout << endl;
SHOW( N::run(fooA,&FooA::operator()));
BOUT( N::run(fooA,&FooA::operator()));
SHOW( N::run(fooB,&FooB::operator()));
BOUT( N::run(fooB,&FooB::operator()));
SHOW( N::run(fooC,&FooC::operator()));
SHOW( N::run(fooD,&FooD::operator()));
}
&CLASS :: operator()を引数としてフィードするという厄介な必要性はまだあります。
最終的に、オブジェクトのoperator()メソッドがvoidを返すかどうかを判断することはできますが、通常、戻り型に基づいてオーバーロードすることはできません。
テンプレートの特殊化により、その過負荷の制限を回避できます。しかし、それから私たちはこの醜いところに入ります、そこで私たちはまだタイプを指定する必要があります...特にリターンタイプ!手動で、または必要な型を抽出できる適切な引数を渡すことによって。
ところで:#defineマクロも役に立ちません。?のようなツール:両方の?に同じタイプが必要です および:一部。
だからこれが私にできる最善のことです...
もちろん...
返品タイプが必要ない場合...
結果を別の関数に渡すだけの場合...
あなたはこのようなことをすることができます:
#include <iostream>
using namespace std;
struct FooA {
void operator()() {}
};
struct FooB {
bool operator()() { return false; }
};
struct FooC {
int operator()() { return 17; }
};
struct FooD {
double operator()() { return 3.14159; }
};
FooA fooA;
FooB fooB;
FooC fooC;
FooD fooD;
void barA() {}
bool barB() { return false; }
int barC() { return 17; }
double barD() { return 3.14159; }
#define SHOW(X) cout << # X " = " << (X) << endl;
namespace N
{
template <typename T, typename R>
R run( T & t, R (T::*f)() ) { return (t .* f) (); }
template <typename T>
bool run( T & t, void (T::*f)() ) { (t .* f) (); return true; }
template <typename T>
void R( T & t )
{
SHOW( N::run( t, &T::operator() ) );
}
template <typename T>
void R( T (*f)() )
{
SHOW( (*f)() );
}
void R( void (*f)() )
{
(*f)();
SHOW( true );
}
};
int main()
{
N::R( barA );
N::R( barB );
N::R( barC );
N::R( barD );
N::R( fooA );
N::R( fooB );
N::R( fooC );
N::R( fooD );
}